Skip to main content

Overview of Respiratory Studies to Support ICH S7A

  • Chapter
Principles of Safety Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 229))

Abstract

Tests of pulmonary function are useful tools for evaluating the potential for compounds to produce toxicity affecting the pulmonary system. Insults to the pulmonary system (i.e., due to drugs, biologics, toxins) can cause detectable dysfunction through multiple mechanisms. Manifestation of the response to insults will depend on the component(s) involved and the compensatory mechanism(s) initiated. The purpose of this chapter is to introduce the concepts of pulmonary testing as it is applied to the preclinical evaluation of pharmaceutical test articles. The topics will include the techniques and methods that have been developed for use in nonclinical (animal) subjects and the parameters that are routinely measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler A, Cieslewicz G, Irvin CG (2004) Unrestrained plethysmography is an unreliable measure of airway responsiveness in BALB/c and C57BL/6 mice. J Appl Physiol 97:286–292

    Article  PubMed  Google Scholar 

  • Authier S, Legaspi M, Gauvin D, Chaurand F, Fournier S, Troncy E (2008) Validation of respiratory safety pharmacology models: conscious and anesthetized beagle dogs. J Pharmacol Toxicol Methods 57(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Authier S, Legaspi M, Gauvin D, Troncy E (2009) Respiratory safety pharmacology: positive control drug responses in Sprague–Dawley rats, Beagle dogs and cynomolgus monkeys. Regul Toxicol Pharmacol 55(2):229–235

    Article  CAS  PubMed  Google Scholar 

  • Authier S, Gervais J, Fournier S, Gauvin D, Maghezzi S, Troncy E (2011) Cardiovascular and respiratory safety pharmacology in Göttingen minipigs: pharmacological characterization. J Pharmacol Toxicol Methods 64(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Bassett L, Troncy E, Robichaud A, Schuessler TF, Pouliot M, Ascah A, Authier S (2014) Non-invasive measure of respiratory mechanics and conventional respiratory parameters in conscious large animals by high frequency Airwave Oscillometry. J Pharmacol Toxicol Methods 70(1):62–65

    Article  CAS  PubMed  Google Scholar 

  • Brouillette RT, Morrow AS, Weese-Mayer DE, Hunt CE (1987) Comparison of respiratory inductive plethysmography and thoracic impedance for apnea monitoring. J Pediatr 111(3):377–383

    Article  CAS  PubMed  Google Scholar 

  • Chaui-Berlinck JG, Bicudo JEPW (1998) The signal in total-body plethysmography: errors due to adiabatic-isothermic difference. Respir Physiol 113(3):259–270

    Article  CAS  PubMed  Google Scholar 

  • Costa DL, Tepper JS, Raub JA (1992) Interpretations and limitations of pulmonary function testing in small laboratory animals. In: Parent RA (ed) Comparative biology of the normal lung, vol 1, CRC Press. Boca Raton, FL, pp 367–399

    Google Scholar 

  • Delaunois A, Dedoncker P, Hanon E, Guyaux M (2009) Repeated assessment of cardiovascular and respiratory functions using combined telemetry and whole-body plethysmography in the rat. Sixth Annual Focused Issue on Methods in Safety Pharmacology [Part II] 60(2):117–129

    Google Scholar 

  • DeLorme MP, Moss OR (2002) Pulmonary function assessment by whole-body plethysmography in restrained versus unrestrained mice. J Pharmacol Toxicol Methods 47(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Diamond L, O’Donnell M (1977) Pulmonary mechanics in normal rats. J Appl Physiol 43(6):942–948

    CAS  PubMed  Google Scholar 

  • Drorbaugh JE, Fenn WO (1955) A barometric method for measuring ventilation in newborn infants. Pediatrics 16(1):81–87

    CAS  PubMed  Google Scholar 

  • Epstein MA, Epstein RA (1978) A theoretical analysis of the barometric method for measurement of tidal volume. Respir Physiol 32(1):105–120

    Article  CAS  PubMed  Google Scholar 

  • Erasmus JJ, Page McAdams H, Rossi SE (2002) Drug-induced lung injury. Diffuse Lung Dis 37(1):72–81

    Google Scholar 

  • Ewart LC, Haley M, Bickerton S, Bright J, Elliott K, McCarthy A, Valentin JP (2010) Pharmacological validation of a telemetric model for the measurement of bronchoconstriction in conscious rats. J Pharmacol Toxicol Methods 61(2):219–229

    Article  CAS  PubMed  Google Scholar 

  • FDA (2001) S7A safety pharmacology studies for human pharmaceuticals. In Guidance for industry

    Google Scholar 

  • Ferguson JS, Schaper M, Stock MF, Weyel DA, Alarie Y (1986) Sensory and pulmonary irritation with exposure to methyl isocyanate. Toxicol Appl Pharmacol 82(2):329–335

    Article  CAS  PubMed  Google Scholar 

  • Fiamma MN, Samara Z, Baconnier P, Similowski T, Straus C (2007) Respiratory inductive plethysmography to assess respiratory variability and complexity in humans. Respir Physiol Neurobiol 156(2):234–239

    Article  PubMed  Google Scholar 

  • Flandre TD, Leroy PL, Desmecht DJ (2003) Effect of somatic growth, strain, and sex on double-chamber plethysmographic respiratory function values in healthy mice. J Appl Physiol 94:1129–1136

    Article  PubMed  Google Scholar 

  • Frantz S, Nihlén U, Dencker M, Engström G, Löfdahl CG, Wollmer P (2012) Impulse oscillometry may be of value in detecting early manifestations of COPD. Respir Med 106(8):1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Gad S (2004) Safety pharmacology in pharmaceutical development and approval. CRC Press, Boca Raton, FL

    Google Scholar 

  • Glaab T, Hoymann HG, Hohlfeld JM, Korolewitz R, Hecht M, Alarie Y, Fabel H (2002) Noninvasive measurement of midexpiratory flow indicates bronchoconstriction in allergic rats. J Appl Physiol 93(4):1208–1214

    Article  PubMed  Google Scholar 

  • Goineau S, Rompion S, Guillaume P, Picard S (2010) Ventilatory function assessment in safety pharmacology: optimization of rodent studies using normocapnic or hypercapnic conditions. Toxicol Appl Pharmacol 247(3):191–197

    Article  CAS  PubMed  Google Scholar 

  • Gube M, Brand P, Conventz A, Ebel J, Goeen T, Holzinger K, Kraus T (2009) Spirometry, impulse oscillometry and capnovolumetry in welders and healthy male subjects. Respir Med 103(9):1350–1357

    Article  PubMed  Google Scholar 

  • Halloy DJ, Kirschvink NA, Vincke GL, Hamoir JN, Delvaux FH, Gustin PG (2004) Whole body barometric plethysmography: a screening method to investigate airway reactivity and acute lung injuries in freely moving pigs. Vet J 168(3):276–284

    Article  PubMed  Google Scholar 

  • Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, Gelfand EW (1997) Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 156:766–775

    Article  CAS  PubMed  Google Scholar 

  • Hammer J, Newth CJL (2009) Assessment of thoraco-abdominal asynchrony. Paediatr Respir Rev 10(2):75–80

    Article  CAS  PubMed  Google Scholar 

  • Hirt RA, Leinker S, Mosing M, Wiederstein I (2008) Comparison of barometric whole body plethysmography and its derived parameter enhanced pause (PENH) with conventional respiratory mechanics in healthy Beagle dogs. Vet J 176(2):232–239

    Article  PubMed  Google Scholar 

  • Hoffman AM (2007) Airway physiology and clinical function testing. Respir Physiol Diagn Dis 37(5):829–843

    Google Scholar 

  • ICH (2000) Safety pharmacology studies for human pharmaceuticals S7A. Presented at the international conference on harmonisation

    Google Scholar 

  • Ingram-Ross JL, Curran AK, Miyamoto M, Sheehan J, Thomas G, Verbeeck J, Pugsley MK (2012) Cardiorespiratory safety evaluation in non-human primates. J Pharmacol Toxicol Methods 66(2):114–124

    Article  CAS  PubMed  Google Scholar 

  • Jackson AC, Watson JW (1982) Oscillatory mechanics of the respiratory system in normal rats. Respir Physiol 48(3):309–322

    Article  CAS  PubMed  Google Scholar 

  • Jackson AC, Watson JW, Kotlikoff MI (1984) Respiratory system, lung, and chest wall impedances in anesthetized dogs. J Appl Physiol 57(1):34–39

    CAS  PubMed  Google Scholar 

  • Jacky JP (1980) Barometric measurement of tidal volume: effects of pattern and nasal temperature. J Appl Physiol 49(2):319–325

    CAS  PubMed  Google Scholar 

  • Kearney K, Metea M, Gleason T, Edwards T, Atterson P (2010) Evaluation of respiratory function in freely moving Beagle dogs using implanted impedance technology. J Pharmacol Toxicol Methods 62(2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Legaspi M, Authier S, Gauvin D, Moreau M, Beauchamp G, Chaurand F, Troncy E (2010) Respiratory safety pharmacology: concurrent validation of volume, rate, time, flow and ratio variables in conscious male Sprague–Dawley rats. Regul Toxicol Pharmacol 58(3):444–450

    Article  PubMed  Google Scholar 

  • Lindgren S, Bass AS, Briscoe R, Bruse K, Friedrichs GS, Kallman MJ, Pugsley MK (2008) Benchmarking Safety Pharmacology regulatory packages and best practice. Fifth Annual Focused Issue on Methods in Safety Pharmacology 58(2):99–109

    Google Scholar 

  • Lomask M (2006) Further exploration of the Penh parameter. Exp Toxicol Pathol 57, Supplement 2(0):13–20

    Google Scholar 

  • Lundblad LK, Irvin CG, Adler A, Bates JH (2002) A reevaluation of the validity of unrestrained plethysmography in mice. J Appl Physiol 93:1198–1207

    Article  PubMed  Google Scholar 

  • Maucote J, El Amrani F, Loriot S, El Amrani AI, Forster R, Legrand JJ (2013) Evaluation of respiratory function in conscious, non-restrained cynomolgus monkey using respiratory inductive plethysmography. 10th Annual focused issue on methods in safety. Pharmacology 68(1):e42

    Google Scholar 

  • Mauderly JL (1989) Effect of inhaled toxicants on pulmonary function. In: McClellan R, Henderson R (eds) Concepts in inhalation toxicology. Hemisphere Publishing Company, New York, pp 347–402

    Google Scholar 

  • Mazan MR, Hoffman AM (2003) Clinical techniques for diagnosis of inflammatory airway disease in the horse. Equine Sports Med 2(3):238–257

    Google Scholar 

  • Milano SP, Bpry C., Boucheix O, Lor I, Dupuis C, Moon B (2011) Assessment of thoracic impedance pneumography telemetry to ambulatory and restrained respiration measurement standards in the dog. Eighth Annual Focused Issue on Methods in Safety Pharmacology 64(1): e56

    Google Scholar 

  • Mitzner W, Tankersley C (2003) Interpreting Penh in mice. J Appl Physiol 94:828–831

    Article  PubMed  Google Scholar 

  • Murphy DJ (2014a) Optimizing the use of methods and measurement endpoints in respiratory safety pharmacology. J Pharmacol Toxicol Methods 70(3):204–209

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ (2014b) Respiratory safety pharmacology – current practice and future directions. Regul Toxicol Pharmacol 69(1):135–140

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Renninger JP, Gossett KA (1998) A novel method for chronic measurement of pleural pressure in conscious rats. J Pharmacol Toxicol Methods 39(3):137–141

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Renninger JP, Coatney RW (2001) A novel method for chronic measurement of respiratory function in the conscious monkey. J Pharmacol Toxicol Methods 46(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ (2002) Assessment of respiratory function in safety pharmacology. Fundam Clin Pharmacol 16(3):183–196

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Renninger JP, Schramek D (2010) Respiratory inductive plethysmography as a method for measuring ventilatory parameters in conscious, non-restrained dogs. J Pharmacol Toxicol Methods 62(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Pennock BE, Cox CP, Rogers RM, Cain WA, Wells JH (1979) A noninvasive technique for measurement of changes in specific airway resistance. J Appl Physiol 46(2):399–406

    CAS  PubMed  Google Scholar 

  • Peslin R, Fredberg J (1986) Oscillation mechanics of the respiratory system. In: Macklem P, Mead J (eds) Mechanics of breathing, Part 1, vol III. American Physiological Society, Bethesda, MD

    Google Scholar 

  • Purbrick S, Jordan S, Moore S, Butler D, French A, Jones D, Meecham K (2012) Evaluation of Respiratory Inductive Plethysmography using the EMKABelt (Jacket) system in the conscious beagle dog. Ninth Annual Focused Issue on Methods in Safety Pharmacology 66(2):183–184

    Google Scholar 

  • Redfern WS, Ewart LC, Lainee P, Pinches M, Robinson S, Valentin JP (2013) Functional assessments in repeat-dose toxicity studies: the art of the possible. Toxicol Res 2(4):209–234

    Article  CAS  Google Scholar 

  • Remmers J (1976) Analysis of ventilatory response. Chest 70:134–137

    Article  CAS  PubMed  Google Scholar 

  • Renninger JP, Murphy DJ, Kohrs LC (2012) Evaluation of a combined model for assessing respiratory and cardiovascular function in the conscious non-restrained monkey. Ninth Annual Focused Issue on Methods in Safety Pharmacology 66(2):178

    Google Scholar 

  • Talavera J, Kirschvink N, Schuller S, Garrérès AL, Gustin P, Detilleux J, Clercx C (2006) Evaluation of respiratory function by barometric whole-body plethysmography in healthy dogs. Vet J 172(1):67–77

    Article  PubMed  Google Scholar 

  • Truchetti G, Troncy E, Robichaud A, Gold L, Schuessler T, Maghezzi S, Authier S (2014) Respiratory mechanics: comparison of Beagle dogs, Gottingen minipigs and Cynomolgus monkeys. J Pharmacol Toxicol Methods 70(1):48–54

    Article  CAS  PubMed  Google Scholar 

  • Tyler W, Julian MD (1992) Gross and subgross anatomy of the lungs, pleura, connective tissue septa, distal airways, and structural units. In: Parent RA (ed) Comparative biology of the normal lung, vol 1, CRC Press. Boca Raton, FL, pp 37–48

    Google Scholar 

  • Watson J (1992) Elastic, resistive, and inertial properties of the lung. In: Parent RA (ed) Comparative biology of the normal lung, vol 1. CRC Press, Boca Raton, FL, pp 175–216

    Google Scholar 

  • Watson JW, Jackson AC (1985) Frequency dependence of CO2 elimination and respiratory resistance in monkeys. J Appl Physiol 58(2):653–657

    Article  CAS  PubMed  Google Scholar 

  • Wegner CD, Jackson AC, Berry JD, Gillespie JR (1984) Dynamic respiratory mechanics in monkeys measured by forced oscillations. Respir Physiol 55(1):47–61

    Article  CAS  PubMed  Google Scholar 

  • Zupnick HM, Brown LK, Miller A, Moros DA (1990) Respiratory dysfunction due to L-Dopa therapy for parkinsonism: diagnosis using serial pulmonary function tests and respiratory inductive plethysmography. Am J Med 89(1):109–114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stonerook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stonerook, M. (2015). Overview of Respiratory Studies to Support ICH S7A. In: Pugsley, M., Curtis, M. (eds) Principles of Safety Pharmacology. Handbook of Experimental Pharmacology, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46943-9_6

Download citation

Publish with us

Policies and ethics