Skip to main content

Nonvolatile Memory Crossbar Arrays for Non-von Neumann Computing

  • Chapter
  • First Online:
Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Abstract

In the conventional von Neumann (VN) architecture, data—both operands and operations to be performed on those operands—makes its way from memory to a dedicated central processor. With the end of Dennard scaling and the resulting slowdown in Moore’s law, the IT industry is turning its attention to non-Von Neumann (non-VN) architectures, and in particular, to computing architectures motivated by the human brain. One family of such non-VN computing architectures is artificial neural networks (ANNs). To be competitive with conventional architectures, such ANNs will need to be massively parallel, with many neurons interconnected using a vast number of synapses, working together efficiently to compute problems of significant interest. Emerging nonvolatile memories, such as phase-change memory (PCM) or resistive memory (RRAM), could prove very helpful for this, by providing inherently analog synaptic behavior in densely packed crossbar arrays suitable for on-chip learning. We discuss our recent research investigating the characteristics needed from such nonvolatile memory elements for implementation of high-performance ANNs. We describe experiments on a 3-layer perceptron network with 164,885 synapses, each implemented using 2 NVM devices. A variant of the backpropagation weight update rule suitable for NVM+selector crossbar arrays is shown and implemented in a mixed hardware–software experiment using an available, non-crossbar PCM array. Extensive tolerancing results are enabled by precise matching of our NN simulator to the conditions of the hardware experiment. This tolerancing shows clearly that NVM-based neural networks are highly resilient to random effects (NVM variability, yield, and stochasticity), but highly sensitive to gradient effects that act to steer all synaptic weights. Simulations of ANNs with both PCM and non-filamentary bipolar RRAM based on Pr\(_{1-x}\)Ca\(_x\)MnO\(_3\) (PCMO) are also discussed. PCM exhibits smooth, slightly nonlinear partial-SET (conductance increase) behavior, but the asymmetry of its abrupt RESET introduces difficulties; in contrast, PCMO offers continuous conductance change in both directions, but exhibits significant nonlinearities (degree of conductance change depends strongly on absolute conductance). The quantitative impacts of these issues on ANN performance (classification accuracy) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Tesla (2015)

  2. Breitwisch, M., Nirschl, T., Chen, C.F., Zhu, Y., Lee, M.H., Lamorey, M., Burr, G.W., Joseph, E., Schrott, A., Philipp, J.B., Cheek, R., Happ, T.D., Chen, S.H., Zaidi, S., Flaitz, P., Bruley, J., Dasaka, R., Rajendran, B., Rossnagel, S., Yang, M., Chen, Y.C., Bergmann, R., Lung, H.L., Lam, C.: Novel lithography–independent pore phase change memory. In: Symposium on VLSI Technology, pp. 100–101 (2007)

    Google Scholar 

  3. Burr, G.W., Narayanan, P., Shelby, R.M., Sidler, S., Boybat, I., di Nolfo, C., Leblebici, Y.: Large–scale neural networks implemented with nonvolatile memory as the synaptic weight element: comparative performance analysis (accuracy, speed, and power). In: IEDM Technical Digest, p. 4.4 (2015)

    Google Scholar 

  4. Burr, G.W., Shelby, R.M., di Nolfo, C., Jang, J., Shenoy, R., Narayanan, P., Virwani, K., Giacometti, E., Kurdi, B., Hwang, H.: Experimental demonstration and tolerancing of a large–scale neural network (165,000 synapses), using phase–change memory as the synaptic weight element. In: IEDM Technical Digest, p. 29.5 (2014)

    Google Scholar 

  5. Burr, G.W., Shelby, R.M., Sidler, S., di Nolfo, C., Jang, J., Boybat, I., Shenoy, R.S., Narayanan, P., Virwani, K., Giacometti, E.U., Kurdi, B., Hwang, H.: Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element. IEEE Trans. Electr. Devices 62(11), 3498–3507 (2015)

    Article  Google Scholar 

  6. Gupta, S., Kaldewey, T.: Private communication (2015)

    Google Scholar 

  7. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jackson, B.L., Rajendran, B., Corrado, G.S., Breitwisch, M., Burr, G.W., Cheek, R., Gopalakrishnan, K., Raoux, S., Rettner, C.T., Padilla, A., Schrott, A.G., Shenoy, R.S., Kurdi, B.N., Lam, C.H., Modha, D.S.: Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. 9(2), 12 (2013)

    Article  Google Scholar 

  9. Jang, J.W., Park, S., Burr, G.W., Hwang, H., Jeong, Y.H.: Optimization of conductance change in Pr\(_{1-x}\)Ca\(_x\)MnO\(_3\)-based synaptic devices for neuromorphic systems. IEEE Electr. Device Lett. 36(5), 457–459 (2015)

    Article  Google Scholar 

  10. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278 (1998)

    Article  Google Scholar 

  12. Lee, J., Jo, M., Seong, D.J., Shin, J., Hwang, H.: Materials and process aspect of cross-point RRAM (invited). Microelectron. Eng. 88(7), 1113–1118 (2011)

    Article  Google Scholar 

  13. Park, S., Kim, H., Choo, M., Noh, J., Sheri, A., Jung, S., Seo, K., Park, J., Kim, S., Lee, W., Shin, J., Lee, D., Choi, G., Woo, J., Cha, E., Jang, J., Park, C., Jeon, M., Lee, B., Lee, B., Hwang, H.: RRAM–based synapse for neuromorphic system with pattern recognition function. In: IEDM Technical Digest, p. 10.2 (2012)

    Google Scholar 

  14. Rajendran, B., Liu, Y., Seo, J.S., Gopalakrishnan, K., Chang, L., Friedman, D.J., Ritter, M.B.: Specifications of nanoscale devices and circuits for neuromorphic computational systems. IEEE Trans. Electr. Devices 60(1), 246–253 (2013)

    Article  Google Scholar 

  15. Rumelhart, D., Hinton, G.E., McClelland, J.L.: A general framework for parallel distributed processing. In: Parallel Distributed Processing. MIT Press (1986)

    Google Scholar 

  16. Suri, M., Bichler, O., Querlioz, D., Cueto, O., Perniola, L., Sousa, V., Vuillaume, D., Gamrat, C., DeSalvo, B.: Phase change memory as synapse for ultra–dense neuromorphic systems: application to complex visual pattern extraction. In: IEDM Technical Digest, p. 4.4 (2011)

    Google Scholar 

  17. Suri, M., Bichler, O., Querlioz, D., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., DeSalvo, B.: CBRAM devices as binary synapses for low–power stochastic neuromorphic systems: auditory (cochlea) and visual (retina) cognitive processing applications. In: IEDM Technical Digest, p. 10.3 (2012)

    Google Scholar 

  18. Yu, S., Gao, B., Fang, Z., Yu, H., Kang, J., Wong, H.S.P.: A neuromorphic visual system using RRAM synaptic devices with sub–pj energy and tolerance to variability: experimental characterization and large–scale modeling. In: IEDM Technical Digest, p. 10.4 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey W. Burr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Sidler, S. et al. (2017). Nonvolatile Memory Crossbar Arrays for Non-von Neumann Computing. In: Suri, M. (eds) Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices. Cognitive Systems Monographs, vol 31. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3703-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3703-7_7

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3701-3

  • Online ISBN: 978-81-322-3703-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics