Skip to main content

Riassunto

Il sistema nervoso centrale negli umani e in altri vertebrati deriva dalla placca neurale, una zona paramediana ispessita e allungata dello strato germinale esterno, o ectoderma (Fig. 2.1 A, E). L’ectoderma, lungo i margini laterali della placca neurale, forma bilateralmente una struttura nastriforme, la cresta neurale primitiva, che divide l’ectoderma neurale primitivo dall’ectoderma primitivo generale somatico. Con la crescita della placca neurale, i suoi margini laterali si sollevano a formare le pieghe neurali, mentre la sua regione mediana si insolca a formare la doccia neurale (Fig. 2.1 B, F). Nelle successive fasi dello sviluppo, la doccia neurale si approfonda e le pieghe neurali si avvicinano l’una all’altra sino a fondersi sulla linea mediana, dando origine al tubo neurale. Va notato che, come i lembi della doccia neurale si avvicinano, trascinano con essi l’adiacente ectoderma generale somatico primitivo e che, a processo di fusione completato, sul piano mediano si fonde non solo l’ectoderma neurale, ma anche l’ectoderma somatico.

Superfici dorsali di ricostruzioni di embrioni umani. A Stadio presomite; l’estensione approssimativa della placca neurale è segnata dalla linea tratteggiata; B Stadio dei sei primi somiti e della doccia neurale; C Embrione allo stadio di sette somiti; D Embrione allo stadio di 10 somiti. Adattato da Noback e Demarest [139]. E–H Sezioni trasverse schematiche condotte lungo l’abbozzo del SNC degli embrioni rappresentati in A–D. La linea orizzontale indica il livello a cui sono state condotte le sezioni

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Al-Ghoul WM, Miller MW (1993) Orderly migration of neurons to the principal sensory nucleus of the trigeminal nerve of the rat. J Comp Neurol 330:464–475

    CAS  PubMed  Google Scholar 

  2. Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. I. The precerebellar neuroepithelium of the rhombencephalon. J Comp Neurol 257:477–489

    CAS  PubMed  Google Scholar 

  3. Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive. J Comp Neurol 257:490–512

    CAS  PubMed  Google Scholar 

  4. Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei. J Comp Neurol 257:513–528

    CAS  PubMed  Google Scholar 

  5. Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray. J Comp Neurol 257:529–552

    CAS  PubMed  Google Scholar 

  6. Alvarez-Bolado G, Swanson LW (1995) Appendix: on mapping patterns in the embryonic forebrain. J Comp Neurol 355:287–295

    Google Scholar 

  7. Alvarez-Bolado G, Rosenfeld MG, Swanson LW (1995) Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features. J Comp Neurol 355:237–295

    CAS  PubMed  Google Scholar 

  8. Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    CAS  PubMed  Google Scholar 

  9. Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res 57:751–758

    Google Scholar 

  10. Ambrosiani J, Armengol JA, Martínez S, Puelles L (1996) The avian inferior olive derives from the alar neuroepithelium of the rhombomeres 7 and 8: an analysis by using chick-quail chimeric embryos. Neuroreport 7:1285–1288

    CAS  PubMed  Google Scholar 

  11. Anderson S, Mione M, Yun K, Rubenstein JLR (1999) Differential origins of neocortical projectionand local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex 9:646–654

    CAS  PubMed  Google Scholar 

  12. Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476

    CAS  PubMed  Google Scholar 

  13. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890

    CAS  PubMed  Google Scholar 

  14. Bartelmez GW (1923) The subdivisions of the neural folds in man. J Comp Neurol 35:231–295

    Google Scholar 

  15. Bartelmez GW, Evans HM (1926) Development of the human embryo during the period of somite formation. Contrib Embryol Carnegie Inst 17:1–67

    Google Scholar 

  16. Bédard A, Lévesque M, Bernier PJ, Parent A (2002) The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci 16:1917–1924

    PubMed  Google Scholar 

  17. Bengmark S, Hugosson R, Källén B (1953) Studien über Kernanlagen im Mesencephalon sowie im Rostralteil des Rhombencephalon von Mus musculus. Z Anat Entwicklungsgesch 117:73–91

    CAS  PubMed  Google Scholar 

  18. Bergquist H (1954) Morphogenesis of diencephalic nuclei in homo. Kgl Fysiogr Sällsk Lund Handl N F 64:1–47

    Google Scholar 

  19. Bergquist H (1954) Ontogenesis of diencephalic nuclei in vertebrates. Kgl Fysiogr Sällsk Lund Handl N F 65:1–34

    Google Scholar 

  20. Bergquist H (1964) Die Entwicklung des Diencephalons im Lichte neuer Forschung. Progr Brain Res 5:223–229

    Google Scholar 

  21. Bergquist H, Källén B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–659

    CAS  PubMed  Google Scholar 

  22. Bolk L (1906) Das Cerebellum der Säugetiere. Fisher, Haarlem

    Google Scholar 

  23. Boulder Committee (1969) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–262

    Google Scholar 

  24. Braitenberg V, Atwood RP (1958) Morphological observations on the cerebellar cortex. J Comp Neurol 109:1–34

    CAS  PubMed  Google Scholar 

  25. Bulfone A, Puelles L, Porteus MH et al (1993) Spatially restricted expression of Dix-1, Dix-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal boundaries. J Neurosci 13:3155–3172

    CAS  PubMed  Google Scholar 

  26. Cai J, Qi Y, Hu X et al (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and SAhh signaling. Neuron 45:41–53

    CAS  PubMed  Google Scholar 

  27. Cajal SR (1972) Histologie du système nerveus de l’homme et des vertébrés. Consejo Superior de Investigaciones Cientificas. Instituto Ramon y Cajal, Madrid

    Google Scholar 

  28. Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545

    CAS  PubMed  Google Scholar 

  29. Campbell K, Götz M (2002) Radial glia: multipurpose cells for vertebrate brain development. Trends Neurosci 25:235–238

    CAS  PubMed  Google Scholar 

  30. Casarosa S, Fode C, Guillemot F (1999) Mash 1 regulates neurogenesis in the ventral telencephalon. Development 126:525–534

    CAS  PubMed  Google Scholar 

  31. Choi BH (1981) Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Brain Res Dev Brain Res 1:249–267

    Google Scholar 

  32. Cobos I, Puelles L, Martínez S (2001) The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas). Dev Biol 239: 30–45

    CAS  PubMed  Google Scholar 

  33. Cobos I, Shimamura K, Rubenstein JLR, Martínez S, Puelles L (2001) Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev Biol 239:46–67

    CAS  PubMed  Google Scholar 

  34. Cooper ERA (1946) The development of the substantia nigra. Brain 69:22–33

    Google Scholar 

  35. Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623

    CAS  PubMed  Google Scholar 

  36. De Carlos JA, López-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16: 6146–6156

    PubMed  Google Scholar 

  37. Deacon TW, Pakzaban P, Isacson O (1994) The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res 668:211–219

    PubMed  Google Scholar 

  38. Denaxa M, Chan CH, Schachner CH, Parnavelas JG, Karagogeos D (2001) The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128:4635–4644

    CAS  PubMed  Google Scholar 

  39. Dickinson PJ, Fanarraga ML, Griffiths IR et al (1996) Oligodendrocyte progenitors in the embryonic spinal cord express DM-20. Neuropathol Appl Neurobiol 22:188–198

    CAS  PubMed  Google Scholar 

  40. Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    CAS  PubMed  Google Scholar 

  41. Essick CR (1907) The corpus ponto-bulbare — a hitherto undescribed nuclear mass in the human hindbrain. Am J Anat 7:119–135

    Google Scholar 

  42. Essick CR (1912) The development of the nuclei pontis and the nucleus arcuatus in man. Am J Anat 13:25–54

    Google Scholar 

  43. Figdor MC, Stern CD (1993) Segmental organization of the embryonic diencephalon. Nature 363: 630–634

    CAS  PubMed  Google Scholar 

  44. Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435

    CAS  PubMed  Google Scholar 

  45. Fujita S (1963) The matrix cell and cytogenesis in the developing central nervous system. J Comp Neurol 120:37–42

    CAS  PubMed  Google Scholar 

  46. Fujita S (1966) Application of light and electron microscopic autoradiography to the study of cytogenesis of the forebrain. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 180–196

    Google Scholar 

  47. Fujita S (1969) Autoradiographic studies on histogenesis of the cerebellar cortex. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. AMA, Chicago, pp 743–748

    Google Scholar 

  48. Gadisseux J-F, Goffinet AM, Lyon G, Evrard P (1992) The human transient subpial granular layer: an optical, immunohistochemical, and ultrastructural analysis. J Comp Neurol 324:94–114

    CAS  PubMed  Google Scholar 

  49. Gage FH, Kempermann G, Palmer T, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36:249–266

    CAS  PubMed  Google Scholar 

  50. Gilbert MS (1935) The early development of the human diencephalon. J Comp Neurol 62:1–115

    Google Scholar 

  51. Gorski JA, Talley T, Qiu M et al (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 22:6309–6314

    CAS  PubMed  Google Scholar 

  52. Götz M, Hartfuss E, Malatesta P (2002) Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull 57:777–780

    PubMed  Google Scholar 

  53. Gregg C, Weiss S (2003) Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 23:11587–11601

    CAS  PubMed  Google Scholar 

  54. Gribnau AAM, Geijsberts LGM (1985) Morphogenesis of the brain in staged Rhesus monkey embryos. Adv Anat Embryol Cell Biol 91:1–69

    CAS  PubMed  Google Scholar 

  55. Hamilton WJ, Boyd JD, Mossman A (1947) Human embryology. Heffer, Cambridge

    Google Scholar 

  56. Hanaway J, McConnell JA, Netsky MG (1971) Histogenesis of the substantia nigra, ventral tegmental area of tsai and interpeduncular nucleus: an autoradiographic study of the mesencephalon in the rat. J Comp Neurol 142:59–74

    CAS  PubMed  Google Scholar 

  57. Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30 58.

    CAS  PubMed  Google Scholar 

  58. Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    CAS  PubMed  Google Scholar 

  59. Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 18:385–408

    CAS  PubMed  Google Scholar 

  60. Hawkes R (1997) An anatomical model of cerebellar modules. Prog Brain Res 114:39–52

    CAS  PubMed  Google Scholar 

  61. Hayashi M (1924) Einige wichtige Tatsachen aus der ontogenetischen Entwicklung des menschlichen Kleinhirns. Dtsch Z Nervenheilkd 81:74–82

    Google Scholar 

  62. Hemond SG, Glover JC (1993) Clonal patterns of cell proliferation, migration, and dispersal in the brainstem of the chicken embryo. J Neurosci 13: 1387–1402

    CAS  PubMed  Google Scholar 

  63. Herrick CJ (1910) The morphology of the forebrain in amphibia and reptilia. J Comp Neurol 20:413–547

    Google Scholar 

  64. Herrick CJ (1913) Anatomy of the brain. In: The reference handbook of the medical sciences, vol 2, 3rd edn. Wood, New York, pp 274–342

    Google Scholar 

  65. Hines M (1922) Studies in the growth and differentiation of the telencephalon in man. The Fissura hippocampi. J Comp Neurol 34:79–171

    Google Scholar 

  66. His W (1893) Vorschläge zur Eintheilung des Gehirns. Arch Anat Physiol Anat Abt 172–180

    Google Scholar 

  67. His W (1893) Über das frontale Ende des Gehirnrohres. Arch Anat Physiol Anat Abt 157–172

    Google Scholar 

  68. His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate. Hirzel, Leipzig

    Google Scholar 

  69. Hochstetter F (1919) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. Deuticke, Vienna

    Google Scholar 

  70. Hochstetter F (1929) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. II. Die Entwicklung des Mittel-und Rautenhirns. Deuticke, Vienna

    Google Scholar 

  71. Holley JA (1982) Early development of the circumferential axonal pathway in mouse and chick spinal cord. J Comp Neurol 205:371–382

    CAS  PubMed  Google Scholar 

  72. Holley JA, Nornes H, Morita M (1982) Guidance of neuritic growth in the transverse plane of embryonic mouse spinal cord. J Comp Neurol 205: 360–370

    CAS  PubMed  Google Scholar 

  73. Holmgren N (1925) Points of view concerning forebrain morphology in higher vertebrates. Acta Zool 6:413–477

    Google Scholar 

  74. Horton S, Meredith A, Richardson JA, Johnson JE (1999) Correct coordination of neuronal differentiation events in ventral forebrain requires the bHLH factor MASH1. Mol Cell Neurosci 14:355–369

    CAS  PubMed  Google Scholar 

  75. Hugosson R (1955) Studien über die Entwicklung der longitudinalen Zellsäulen und der Anlagen der Gehirnnervenkerne in der Medulla oblongata bei verschiedenen Vertebraten. Z Anat Entwicklungsgesch 118:543–566

    CAS  PubMed  Google Scholar 

  76. Hugosson R (1957) Morphologic and experimental studies on the development and significance of the rhombencephalic longitudinal cell columns. Thesis, University of Lund

    Google Scholar 

  77. Jakob A (1928) Das Kleinhirn. In: Von Möllendorff’s Handbuch der Mikroskopischen Anatomie des Menschen, IV/I, Nervensystem. Springer, Berlin

    Google Scholar 

  78. Johnston JB (1902) An attempt to define the primitive functional divisions of the central nervous system. J Comp Neurol 12:87–106

    Google Scholar 

  79. Johnston JB (1909) The morphology of the forebrain vesicle in vertebrates. J Comp Neurol 19:457–539

    Google Scholar 

  80. Kahle W (1951) Studien über die Matrixphasen und die örtlichen Reifungsunterschiede im embryonalen menschlichen Gehirn. Dtsch Z Nervenheilkd 166:272–302

    Google Scholar 

  81. Kahle W (1956) Zur Entwicklung des menschlichen Zwischenhirns. Dtsch Z Nervenheilkd 175: 259–318

    CAS  PubMed  Google Scholar 

  82. Kahle W (1969) Die Entwicklung der menschlichen Grosshirnhemisphäre: Mit 55 Abbildungen. Springer, Berlin Heidelberg New York

    Google Scholar 

  83. Kahle W (1986) Nervous system and sensory organs. Thieme, New York

    Google Scholar 

  84. Källén B (1951) Embryological studies on the nuclei and their homologization in the vertebrate forebrain. Kgl Fysiogr Sällsk Lund Handl N F 62:1–36

    Google Scholar 

  85. Källén B (1951) The nuclear development in the mammalian forebrain with special regard to the subpallium. Kgl Fysiogr Sällsk Lund Handl N F 61:1–43

    Google Scholar 

  86. Kappel RM (1981) The development of the cerebellum in Macaca mulatta. Thesis, University of Leiden

    Google Scholar 

  87. Kawano H, Ohyama K, Kawamura K, Nagatsu I (1995) Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res Dev Brain Res 86:101–113

    CAS  PubMed  Google Scholar 

  88. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    CAS  PubMed  Google Scholar 

  89. Keyser A (1972) The development of the diencephalon of the chinese hamster: an investigation of the validity of the criteria of subdivision of the brain. Acta Anat (Basel) 59:1–178

    CAS  Google Scholar 

  90. Kim J-H, Auerbach JM, Rodriguez-Gómez JA et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56

    CAS  PubMed  Google Scholar 

  91. Knyihar-Csillik E, Csillik B, Rakic P (1995) Structure of the embryonic primate spinal cord. Anat Embryol (Berl) 191:319–540

    Google Scholar 

  92. Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98:4752–4757

    CAS  PubMed  Google Scholar 

  93. Korneliussen HK (1968) Comments on the cerebellum and its division. Brain Res 8:229–235

    CAS  PubMed  Google Scholar 

  94. Korneliussen HK (1969) Cerebellar organization in the light of cerebellar nuclear morphology and cerebellar corticogenesis. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. AMA, Chicago, pp 515–523

    Google Scholar 

  95. Kostovic I (1990) Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Prog Brain Res 85:223–240

    CAS  PubMed  Google Scholar 

  96. Kostovic I (1990) Zentralnervensystem. In: Hinrichsen KV (ed) Humane Embryologie. Springer, Berlin Heidelberg New York, pp 381–448

    Google Scholar 

  97. Koutcherov Y, Mai JK, Ashwell KWS, Paxinos G (2002) Organization of human hypothalamus in fetal development. J Comp Neurol 446:301–324

    PubMed  Google Scholar 

  98. Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–399

    CAS  PubMed  Google Scholar 

  99. Krumlauf R, Marshall H, Studer M et al (1993) Hox Homeobox genes and regionalisation of the nervous system. J Neurobiol 24:1328–1340

    CAS  PubMed  Google Scholar 

  100. Kuhlenbeck H (1954) The human diencephalon: a summary of development, structure, function and pathology. Confin Neurol 14:1–230

    CAS  PubMed  Google Scholar 

  101. Lange W (1975) Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 157:115–124

    CAS  PubMed  Google Scholar 

  102. Langelaan JW (1910) Voordrachten over den bouw van het centrale zenuwstelsel. Versluys, Amsterdam

    Google Scholar 

  103. Langelaan JW (1919) On the development of the external form of the human cerebellum. Brain 42:130–170

    Google Scholar 

  104. Larsell O (1934) Morphogenesis and evolution of the cerebellum. Arch Neurol 31:373–395

    Google Scholar 

  105. Larsell O (1947) The development of the cerebellum in man in relations to its comparative anatomy. J Comp Neurol 87:85–129

    Google Scholar 

  106. Larsell O (1970) The comparative anatomy and histology of the cerebellum from monotremes through apes. University of Minneapolis Press, Minneapolis

    Google Scholar 

  107. Larsell O, Jansen J (1972) The comparative anatomy and histology of the cerebellum. III. The human cerebellum, cerebellar connections, and cerebellar cortex. University of Minneapolis Press, Minneapolis

    Google Scholar 

  108. Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    CAS  PubMed  Google Scholar 

  109. Leber SM, Sanes JR (1995) Migratory paths of neurons and glia in the embryonic chick spinal cord. J Neurosci 15:1236–1248

    CAS  PubMed  Google Scholar 

  110. Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294

    CAS  PubMed  Google Scholar 

  111. Letinic K, Kostovic I (1997) Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 384: 373–395

    CAS  PubMed  Google Scholar 

  112. Letinic K, Rakic P (2002) Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 4:931–936

    Google Scholar 

  113. Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    CAS  PubMed  Google Scholar 

  114. Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840

    CAS  PubMed  Google Scholar 

  115. Lim DA, Flames N, Collado L, Herrera DG (2002) Investigating the use of primary adult subventricular zone neural precursor cells for neuronal replacement therapies. Brain Res Bull 57:759–764

    PubMed  Google Scholar 

  116. Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90:2074–2077

    CAS  PubMed  Google Scholar 

  117. Lois C, Alvarez-Buylla A (1994) A long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    CAS  PubMed  Google Scholar 

  118. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    CAS  PubMed  Google Scholar 

  119. Mai JK, Andressen C, Ashwell KWS (1998) Demarcation of prosencephalic regions by CD15-positive radial glia. Eur J Neurosci 10:746–751

    CAS  PubMed  Google Scholar 

  120. Malatesta P, Hartfuss E, Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    CAS  PubMed  Google Scholar 

  121. Marchand R (1987) Histogenesis of the subthalamic nucleus. Neuroscience 21:183–195

    CAS  PubMed  Google Scholar 

  122. Marin F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738

    CAS  PubMed  Google Scholar 

  123. Marín O, Rubenstein JLR (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790

    PubMed  Google Scholar 

  124. Marín O, Rubenstein JLR (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    PubMed  Google Scholar 

  125. Marín O, Anderson SA, Rubenstein JLR (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076

    PubMed  Google Scholar 

  126. Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126

    CAS  PubMed  Google Scholar 

  127. Marin-Padilla M (1988) Early ontogenesis of the human cerebral cortex. In: Jones EG, Peters A (eds) Development and maturation of cerebral cortex. Plenum, New York, pp 1–34 (Cerebral cortex, vol 7)

    Google Scholar 

  128. Marin-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitecture: a unifying theory. J Comp Neurol 321:223–240

    CAS  PubMed  Google Scholar 

  129. Martínez S, Puelles L (2000) Neurogenetic compartments of the mouse diencephalon and some characteristic gene expression patterns. In: Goffinet AM, Rakic P (eds) Mouse brain development. Springer, Heidelberg, pp 91–106 (Results and problems in cell differentiation, vol 30)

    Google Scholar 

  130. Medina L, Legaz I, Gonzalez G et al (2004) Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J Comp Neurol 474:504–523

    PubMed  Google Scholar 

  131. Misson J-P, Edwards MA, Yamamoto M, Caviness VS Jr (1988) Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Brain Res Dev Brain Res 38:183–190

    Google Scholar 

  132. Misson J-P, Austin CP, Takahashi T, Cepko CL, Caviness VS Jr (1991) The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cereb Cortex 1:221–229

    CAS  PubMed  Google Scholar 

  133. Mugnaini E, Forströnen PF (1967) Ultrastructural studies on the cerebellar histogenesis. I. Differentiation of granule cells and development of glomeruli in the chick embryo. Z Zellforsch 77:115–143

    CAS  PubMed  Google Scholar 

  134. Müller F, O’Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol 176:413–430

    PubMed  Google Scholar 

  135. Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432

    CAS  PubMed  Google Scholar 

  136. Nadarajah B, Alifragis P, Wong R, Parnavelas JG (2002) Ventricle-directed migration in the developing cerebral cortex. Nat Neurosci 5:218–224

    CAS  PubMed  Google Scholar 

  137. Nakatsu T, Uwabe C, Shiota K (2000) Neural tube closure initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol 201:455–466

    CAS  PubMed  Google Scholar 

  138. Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 1. Springer, Berlin Heidelberg New York, pp 159–228

    Google Scholar 

  139. Noback CR, Demarest RJ (1975) The human nervous system. McGraw-Hill, New York

    Google Scholar 

  140. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    CAS  PubMed  Google Scholar 

  141. Nordlander RH (1987) Axonal growth cones in the developing amphibian spinal cord. J Comp Neurol 263:485–496

    CAS  PubMed  Google Scholar 

  142. O’Rahilly R, Gardner E (1979) The initial development of the human brain. Acta Anat (Basel) 104:123–133

    Google Scholar 

  143. O’Rahilly R, Müller F (1999) The embryonic human brain. An atlas of developmental stages, 2nd edn. Wiley, New York

    Google Scholar 

  144. O’Rahilly R, Müller F, Hutchins GM, Moore GW (1984) Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am J Anat 171: 243–257

    PubMed  Google Scholar 

  145. O’Rourke NA, Sullivan DP, Kaznowski CE, Jacobs AA, McConnell SK (1995) Tangential migration of neurons in the developing cerebral cortex. Development 121:2166–2176

    Google Scholar 

  146. Oberdick J, Baader SL, Schilling K (1998) From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci 21:383–390

    CAS  PubMed  Google Scholar 

  147. Olivier C, Cobos I, Perez-Villegas E et al (2001) Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128:1757–1769

    CAS  PubMed  Google Scholar 

  148. Olsson M, Björklund A, Campbell K (1998) Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 84:867–876

    CAS  PubMed  Google Scholar 

  149. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    CAS  PubMed  Google Scholar 

  150. Ourednik V, Ourednik J, Flax JD et al (2001) Segregation of human neural stem cells in the developing primate forebrain. Science 293:1820–1824

    CAS  PubMed  Google Scholar 

  151. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    CAS  PubMed  Google Scholar 

  152. Palmgren A (1921) Embryological and morphological studies on the midbrain and cerebellum of vertebrates. Acta Zool (Stockh) 2:1–94

    Google Scholar 

  153. Parmantier E, Braun C, Thomas J-L et al (1997) PMP-22 expression in the central nervous system of the embryonic mouse defines potential transverse segments and longitudinal columns. J Comp Neurol 378:159–172

    CAS  PubMed  Google Scholar 

  154. Phelps PE, Vaughn JE (1995) Commissural fibers may guide cholinergic neuronal migration in developing rat cervical spinal cord. J Comp Neurol 355:38–50

    CAS  PubMed  Google Scholar 

  155. Pleasure S, Anderson S, Hevner R et al (2000) Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28:727–740

    CAS  PubMed  Google Scholar 

  156. Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46:319–337

    CAS  PubMed  Google Scholar 

  157. Puelles L (2001) Brain segmentation and forebrain development in amniotes. Brain Res Bull 55:695–710

    CAS  PubMed  Google Scholar 

  158. Puelles L (2002) Morphogenetic deformation at the thalamotelencephalic boundary and the lamina affixa myth In: The human brain 2002. Abstracts of an IRCCS meeting, Rome, Oct 5–10, 2002, p 41

    Google Scholar 

  159. Puelles L, Medina L (1994) Development of neurons expressing tyrosine hydroxylase and dopamine in the chicken brain: a comparative segmental analysis. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 381–404

    Google Scholar 

  160. Puelles L, Medina L (2002) Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Res 57: 243–255

    Google Scholar 

  161. Puelles L, Rubenstein JL (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479

    CAS  PubMed  Google Scholar 

  162. Puelles L, Rubenstein JLR (2002) Forebrain. In: Ramachandran VS (ed) Encyclopedia of the human brain, Vol 2. Academic Press, Amsterdam, pp 299–315

    Google Scholar 

  163. Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 469–476

    Google Scholar 

  164. Puelles L, Verney C (1998) Early neuromeric distribution of tyrosine-hydroxylase-immunoreactive neurons in human embryos. J Comp Neurol 394:283–308

    CAS  PubMed  Google Scholar 

  165. Puelles L, Domenech-Ratto G, Martinez-de-la-Torre M (1987) Location of the rostral end of the longitudinal brain axis: review of an old topic in the light of marking experiments on the closing rostral neuropore. J Morphol 194:163–171

    CAS  PubMed  Google Scholar 

  166. Puelles L, Kuwana E, Puelles E et al (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    CAS  PubMed  Google Scholar 

  167. Qi Y, Stapp D, Qiu M (2002) Origin and molecular specification of oligodendrocytes in the telencephalon. Trends Neurosci 25:223–225

    CAS  PubMed  Google Scholar 

  168. Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312

    CAS  PubMed  Google Scholar 

  169. Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    CAS  PubMed  Google Scholar 

  170. Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–427

    CAS  PubMed  Google Scholar 

  171. Rakic P (1990) Principles of neural cell migration. Experientia 46:883–891

    Google Scholar 

  172. Rakic P, Sidman RL (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch 129:53–82

    CAS  PubMed  Google Scholar 

  173. Redies C, Medina L, Puelles L (2001) Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J Comp Neurol 438:253–285

    CAS  PubMed  Google Scholar 

  174. Reinoso-Suarez F (1966) Development of the human diencephalon. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 296–304

    Google Scholar 

  175. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–351

    CAS  PubMed  Google Scholar 

  176. Richter C (1966) Über die Entwicklung des Globus pallidus und des Corpus subthalamicum beim Menschen. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 285–295

    Google Scholar 

  177. Richter E (1965) Die Entwicklung des Globus Pallidus und des Corpus Subthalamicum. Springer, Berlin Heidelberg New York

    Google Scholar 

  178. Rodriguez CI, Dymecki SM (2000) Origin of the precerebellar system. Neuron 27:475–486

    CAS  PubMed  Google Scholar 

  179. Romanes GJ (1941) Cell columns in the spinal cord of a human foetus of fourteen weeks. J Anat 75: 145–152

    CAS  PubMed  Google Scholar 

  180. Rubenstein JLR, Beachy PA (1998) Patterning of the embryonic forebrain. Curr Opin Neurobiol 8:18–26

    CAS  PubMed  Google Scholar 

  181. Rubenstein JLR, Martínez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580

    CAS  PubMed  Google Scholar 

  182. Rubenstein JLR, Shimamura K, Martínez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477

    CAS  PubMed  Google Scholar 

  183. Rüdeberg SI (1961) Morphogenetic studies on the cerebellar nuclei and their homologization in different vertebrates including man. Thesis, Lund

    Google Scholar 

  184. Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K (2004) Development of the posterior neural tube in human embryos. Anat Embryol 209:107–117

    PubMed  Google Scholar 

  185. Sanai N, Tramontin AD, Quiñones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    CAS  PubMed  Google Scholar 

  186. Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 156:115–152

    CAS  Google Scholar 

  187. Schoenen J, Faull RLM (1990) Spinal cord: cytoarchitectural, dendroarchitectural and myeloarchitectural organization. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 19–53

    Google Scholar 

  188. Schwalbe G (1880) Beiträge zur Entwicklungsgeschichte des Zwischenhirns. Sitz Ber Jen Ges Med Naturwiss 20:2–7

    Google Scholar 

  189. Shatz CJ (1992) How are specific connections formed between thalamus and cortex? Curr Opin Neurobiol 2:79–82

    Google Scholar 

  190. Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35

    CAS  PubMed  Google Scholar 

  191. Singer M, Nordlander RH, Egar M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol 185:1–22

    CAS  PubMed  Google Scholar 

  192. Smart IHM (1972) Proliferative characteristics of the ependymal layer during the early development of the spinal cord in the mouse. J Anat 111:365–380

    CAS  PubMed  Google Scholar 

  193. Smart IHM (1972) Proliferative characteristics of the ependymal layer during the early development of the mouse diencephalon, as revealed by recording the number, location, and plane of cleavage of mitotic figures. J Anat 113:109–129

    CAS  PubMed  Google Scholar 

  194. Smart IHM (1973) Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J Anat 116:67–91

    CAS  PubMed  Google Scholar 

  195. Smart IHM (1976) A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J Anat 121:71–84

    CAS  PubMed  Google Scholar 

  196. Smart IHM, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon: II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 134:415–442

    CAS  PubMed  Google Scholar 

  197. Smart IHM, Sturrock RR (1979) Ontogeny of the neostriatum. In: Divac I, Oberg RGE (eds) The neostriatum. Pergamon, Oxford, pp 127–146

    Google Scholar 

  198. Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53

    PubMed  Google Scholar 

  199. Spassky N, Goujet-Zalc C, Parmantier E et al (1998) Multiple restricted origins of oligodendrocytes. J Neurosci 18:8331–8343

    CAS  PubMed  Google Scholar 

  200. Spassky N, Olivier C, Perez-Villegas E et al (2000) Single or multiple oligodendroglial lineages: a controversy. Glia 29:143–148

    CAS  PubMed  Google Scholar 

  201. Streeter GL (1911) Die Entwicklung des centralen Nervensystems. In: Keibel F, Mall FP (eds) Handbuch der Entwicklungsgeschichte des Menschen, vol 2. Hirzel, Leipzig, pp 28–125

    Google Scholar 

  202. Sturrock RR (1979) A comparison of the processes of ventricular coarctation and choroid and ependymal fusion in the mouse brain. J Anat 129:235–242

    CAS  PubMed  Google Scholar 

  203. Sussel L, Marin O, Kimura S, Rubenstein JLR (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370

    CAS  PubMed  Google Scholar 

  204. Swanson JJ, Kuehl-Kovarik MC, Elmquist JK, Sakaguchi DS, Jacobson CD (1999) Development of the facial and hypoglossal motor nuclei in the neonatal Brazilian opossum brain. Dev Brain Res 112:159–172

    CAS  Google Scholar 

  205. Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323

    CAS  PubMed  Google Scholar 

  206. Tan K, Le Douarin M (1991) Development of the nuclei and cell migration in the medulla oblongata: application of the quail-chick chimera system. Anat Embryol 183:321–343

    CAS  PubMed  Google Scholar 

  207. Tekki-Kessaris N, Woodruff R, Hall AC et al (2001) Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128:2545–2554

    CAS  PubMed  Google Scholar 

  208. Timsit S, Martinez S, Allinquant B et al (1995) Oligodendrocytes originate from a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA. J Neurosci 15:1012–1024

    CAS  PubMed  Google Scholar 

  209. Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 1:116–124

    CAS  PubMed  Google Scholar 

  210. Uylings HBM (2001) The human cerebral cortex in development. In: Kalverboer AF, Gramsbergen A (eds) Handbook of brain and behaviour in human development. Kluwer, Dordrecht, pp 63–80

    Google Scholar 

  211. Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45:55–67

    CAS  PubMed  Google Scholar 

  212. Verbitskaya LB (1969) Some aspects of the ontophylogenesis of the cerebellum. In: Llinás R (ed) Neurobiology of cerebellum evolution and development. AMA, Chicago, pp 859–879

    Google Scholar 

  213. Verney C, Zecevic N, Puelles L (2001) Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J Comp Neurol 429:22–44

    CAS  PubMed  Google Scholar 

  214. Von Baer KE (1828) Über die Entwicklungsgeschichte der Thiere. Bornträger, Königsberg

    Google Scholar 

  215. Von Kupffer C (1906) Die Morphogenie des Zentralnervensystems. In: Hertwig O (ed) Handbuch der Vergleichenden und Experimentellen Entwicklungslehre der Wirbeltiere, vol 2, part 3. Fischer, Jena, pp 1–272

    Google Scholar 

  216. Voogd J (1992) The morphology of the cerebellum the last 25 years. Eur J Morphol 30:81–96

    CAS  PubMed  Google Scholar 

  217. Voogd J, Feirabend HKP, Schoen JHR (1990) Cerebellum and precerebellar nuclei. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 321–386

    Google Scholar 

  218. Voogd J, Jaarsma D, Marani E (1996) The cerebellum, chemoarchitecture and anatomy. In: Swanson LW, Björklund A, Hökfelt T (eds) Integrated systems of the CNS, part III. Cerebellum, basal ganglia, olfactory system. Elsevier, Amsterdam, pp 1–369 (Handbook of chemical neuroanatomy, vol 12)

    Google Scholar 

  219. Weissman T, Noctor SC, Clinton BK, Honig LS, Kriegstein AR (2003) Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb Cortex 13:550–559

    PubMed  Google Scholar 

  220. Westergaard E (1969) The cerebral ventricles of the golden hamster during growth. Acta Anat (Basel) 72:533–548

    CAS  Google Scholar 

  221. Westergaard E (1969) The cerebral ventricles of the rat during growth. Acta Anat (Basel) 74:405–423

    CAS  Google Scholar 

  222. Westergaard E (1971) The lateral cerebral ventricles of human foetuses with a crown-rump length of 26–178. Acta Anat (Basel) 79:409–422

    CAS  Google Scholar 

  223. Wilkinson DG, Krumlauf R (1990) Molecular approaches to the segmentation of the hindbrain. Trends Neurosci 13:335–339

    CAS  PubMed  Google Scholar 

  224. Wilson SW, Rubenstein JLR (2000) Induction and dorsoventral patterning of the telencephalon. Neuron 28:641–651

    CAS  PubMed  Google Scholar 

  225. Windle WF (1970) Development of neural elements in human embryos of four to seven weeks gestation. Exp Neurol 28(Suppl 5):44–83

    PubMed  Google Scholar 

  226. Wingate RJT (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88

    CAS  PubMed  Google Scholar 

  227. Wingate RJ, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126:4395–4404

    CAS  PubMed  Google Scholar 

  228. Yamadori T (1965) Die Entwicklung des Thalamuskerns mit ihren ersten Fasersystemen bei menschlichen Embryonen. J Hirnforsch 7:393–413

    CAS  PubMed  Google Scholar 

  229. Yun K, Potter S, Rubenstein JLR (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128:193–205

    CAS  PubMed  Google Scholar 

  230. Zhao M, Momma S, Delfani K et al (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100: 7925–7930

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Nieuwenhuys, R., Voogd, J., van Huijzen, C., Papa, M. (2010). Sviluppo. In: Il sistema nervoso centrale. Springer, Milano. https://doi.org/10.1007/978-88-470-1140-3_2

Download citation

Publish with us

Policies and ethics