Skip to main content

Organic Citrus: Soil Fertility and Plant Nutrition Management

  • Chapter
  • First Online:
Advances in Citrus Nutrition

Abstract

During the last decade, the organic food and farming (OFF) sector has grown considerably worldwide. Citrus play an important role in organic farming systems, being one of the most highly demanded products on the market for organic produce. In this chapter, the criteria for citrus orchards fertility management and plant nutrition in the organically managed agroecosystems are discussed in the light of the most relevant scientific literature. Moreover, two case studies carried out in Southern Italy and aimed at comparing conventional and organic orange management in terms of yield, yield quality and long-term impact on soil fertility are reported. The body of knowledge available and the results presented demonstrate that organic citrus management is a technically feasible option for citrus growers. In addition, the shift to organic farming could contribute to enhance the environmental sustainability of citrus productions in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Allah ASE (2006) Effect of spraying some macro and micro nutrients on fruit set, yield and fruit quality of Washington Navel orange trees. J Appl Sci Res 2(11):1059–1063

    Google Scholar 

  • Abouziena HF, Hafez OM, El-Metwally IM et al (2008) Comparison of weed suppression and mandarin fruit yield and quality obtained with organic mulches, synthetic mulches, cultivation and glyphosate. Hortic Sci 43(3):795–799

    Google Scholar 

  • Agehara S, Warncke DD (2005) Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Sci Soc Am J 69:1844–1855. doi:10.2136/sssaj2004.0361

    Article  CAS  Google Scholar 

  • Albiach R, Canet R, Pomares F et al (1999) Structure, organic components and biological activity in citrus soils under organic and conventional management. Agrochimica 43(5/6):235–242

    CAS  Google Scholar 

  • Alef K (1995) Soil respiration. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London

    Google Scholar 

  • Alianiello F, Fiorelli F (1998) Iso-electric focusing in soil science: a tool to develop for the knowledge of humic substances. Fresenius Environ Bull 7:523–530

    CAS  Google Scholar 

  • Altieri MA (1983) The question of small development: who teaches whom? Agric Ecosyst Environ 9:40–405

    Article  Google Scholar 

  • Altieri MA (1995) Agroecology: the science of sustainable agriculture. Intermediate Technology Publications, Westview press, London

    Google Scholar 

  • Altieri MA, Nicholls CI (2005) Agroecology and the search for a truly sustainable agriculture. United Nations Environment Programme, Mexico. http://www.agroeco.org/doc/agroecology-engl-PNUMA.pdf. Accessed 24 Oct 2011

  • Alva AK, Paramasivam S, Hostler KH et al (2001) Effects of nitrogen rates on dry matter and nitrogen accumulation in citrus fruits and fruit yield. J Plant Nutr 24(3):561–572. doi:10.1081/PLN-100104980

    Article  CAS  Google Scholar 

  • Alva AK, Mattos DJ, Paramasivam S et al (2006) Potassium management for optimizing citrus production and quality. Int J Fruit Sci 6:3–43. doi:10.1300/J492v06n01_02

    Article  Google Scholar 

  • Anderson TH (2003) Microbial eco-physiological indicators to asses soil quality. Agric Ecosyst Environ 98:285–293

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1980) Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci 130:211–216

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1985) Maintenance requirements of actively metabolizing microbial populations under in situ conditions. Soil Biol Biochem 17:197–203

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1989) Ratios of microbial biomass ­carbon to total organic-C in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Article  Google Scholar 

  • Anderson TH, Weigel HJ (2003) On the current debate about soil biodiversity. Landbauforschung Völkenrode 4(53):223–233

    Google Scholar 

  • Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169

    Article  CAS  Google Scholar 

  • Bateman SA, Kelly SD, Woolfe M (2005) Nitrogen isotope relationship between crops and fertilizer: implication for using nitrogen isotope analysis as an indicator of agriculture regime. J Agric Food Chem 53:2664–2670. doi:10.1021/jf050374h

    Article  Google Scholar 

  • Bateman SA, Kelly SD, Woolfe M (2007) Nitrogen isotope composition of organically and conventionally grown crops. J Agric Food Chem 55:2664–2670. doi:10.1021/jf0627726

    Article  PubMed  CAS  Google Scholar 

  • Bath B (2000) Matching the availability of N mineralized from crops with the N-demand of field vegetables. Doctoral thesis, Swedish University of Agricultural Science, Upssala, Sweden

    Google Scholar 

  • Boaretto AE, Ueta FZ, Trivelin PCO et al (2006) Efficiency of nitrogen fertilization on citrus orchards. Acta Hortic 721:331–336

    CAS  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen total. In: Page AL (ed) Methods of soil analysis Part 2, vol 9, 2nd edn, Agron monograph. ASA/SSSA, Madison

    Google Scholar 

  • Bricout J, Koziet J (1987) Control of the authenticity of orange juice by isotopic analysis. J Agric Food Chem 35(5):758–760. doi:10.1021/jf00077a027

    Article  CAS  Google Scholar 

  • Canali S (2003) Soil quality of organically managed citrus orchards in the Mediterranean area. Organic agriculture: sustainability, markets and policies. OECD/CABI Publishing, Paris/Wallingford

    Google Scholar 

  • Canali S, Trinchera A, Intrigliolo F et al (2004) Effect of long term addition of composts and poultry manure on soil quality of citrus orchards in Southern Italy. Biol Fertil Soils 40:206–210. doi:10.1007/s00374-004-0759-x

    Article  Google Scholar 

  • Canali S, Di Bartolomeo E, Trinchera A et al (2009) Effect of different management strategies on soil quality of citrus orchards in Southern Italy. Soil Use Manag 25:34–42. doi:10.1111/j.1475-2743.2008.00191.x

    Article  Google Scholar 

  • Chambers R (1983) Rural development: putting the last fist. Longman, London

    Google Scholar 

  • Choi WJ, Arshad SX, Chang SX et al (2006) Grain 15N of crops applied with organic and chemical fertilizers in a four-year rotation. Plant Soil 284:165–174. doi:10.1007/s11104-006-0038-8

    Article  CAS  Google Scholar 

  • Ciavatta C, Govi M (1993) Use of insoluble polyvinylpyrrolidone and isoelectric focusing in the study of humic substances in soils and organic wastes. J Chromatogr 643:261–270. doi:10.1016/0021-9673(93)80560-U

    Article  CAS  Google Scholar 

  • Ciavatta C, Govi M, Vittori Antisari L et al (1990) Characterization of humified compounds by extraction and fractionation on solid polyvynilpyrrolidone. J Chromatogr 509:141–146

    Article  CAS  Google Scholar 

  • Clark MS, Horwath WR, Shermann C et al (1998) Changes in soil chemical properties resulting from organic and low-input farming practices. Agron J 90:662–671

    Article  Google Scholar 

  • Conway GR (1981a) What is an agroecosystem and why is it worthy of study? Paper presented at the workshop on human/agroecosystem interactions. PESAM/EAPI. Los Banos College, Laguna

    Google Scholar 

  • Conway GR (1981b) Man versus pests. In: May R (ed) Theoretical ecology. Blackwell Science, Boston

    Google Scholar 

  • Conway GR (1985) Agroecosystem analysis. Agric Admin 20:1–30

    Google Scholar 

  • Dasberg S (1987) Nitrogen fertilization in citrus orchards. Plant Soil 100:1–9. doi:10.1007/BF02370928

    Article  CAS  Google Scholar 

  • Dazzi C (2005) I suoli della Sicilia. Notes from lessons. University of Palermo, Palermo (In Italian)

    Google Scholar 

  • De Nobili M, Bragato G, Alcaniz JM et al (1990) Characterisation of electrophoretic fractions of humic substances with different electrofocusing behaviour. Soil Sci 150:763–770

    Article  Google Scholar 

  • Dell’Abate MT, Benedetti A, Trinchera A et al (2002) Humic substances along the profile of two Typic Haploxerert. Geoderma 107:281–296. doi:10.1016/S0016-7061(01), 00153-7

    Article  Google Scholar 

  • Diaz LF, Savage GM (2007) Factors that affect the process. In: Diaz LF (ed) Compost science and technology. Elsevier, Amsterdam

    Google Scholar 

  • Dick WA, Gregorich EG (2004) Developing and maintaining soil organic matter levels. In: Schjönning P, Elmholt S, Christensen BT (eds) Managing soil quality. Challenges in modern agriculture. CABI Publishing, Wallingford

    Google Scholar 

  • Dommergues Y (1960) La notion de coefficient de minéralisation du carbone dans les sols. Agron Trop XV(1):54–60 (In French)

    Google Scholar 

  • Dou H, Alva AK, Khakural BR (1997) Nitrogen mineralization from citrus tree residues under different production conditions. Soil Sci Am J 61:1226–1232

    Article  CAS  Google Scholar 

  • EC Regulation 834/2007 of the Council of 28th June 2007. On organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Official J Eur Union L 189, pp 1–23

    Google Scholar 

  • Eghball B, Wienholdy BJ, Gilleyz JE, Eigenberg RA (2002) Mineralization of manure nutrients. Soil Water Conserv 57(6):470–473

    Google Scholar 

  • Ellen R (1982) Environment, substance and systems. Cambridge University Press, New York

    Google Scholar 

  • Embleton TW, Jones WW, Labanauskas CK et al (1973) Leaf analysis as a diagnostic tool and guide for fertilization. In: Reuther W (ed) The citrus industry, vol III., pp 183–210

    Google Scholar 

  • Engels C, Marschner H (1992) Adaptation of potassium translocation into the shoot of maize (Zea mays) to shoot demand: evidence for xylem loading as a regulating step. Physiol Plant 86:263–268. doi:10.1034/j.1399-3054.1992.860211.x

    Article  Google Scholar 

  • FAOSTAT (2009) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 11 July 2011

  • Flieβbach A, Mäder P (2000) Microbial biomass and size-density fractions between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768

    Article  Google Scholar 

  • FoodNews (2003) Natural selection. Nat Ingredients/Organics, March 2003, Tunbridge Wells, UK

    Google Scholar 

  • Franca SC, Gomes-da-Costa SM, Silveira APD (2007) Microbial activity and arbuscular mycorrhizal fungal diversity in conventional and organic citrus orchards. Biol Agric Hort 25:91–102

    Article  Google Scholar 

  • Georgi M, Voerkelius S, Rossmann A et al (2005) Multielement isotope ratios of vegetables from integrated and organic production. Plant Soil 275:93–100. doi:10.1007/s11104-005-0258-3

    Article  CAS  Google Scholar 

  • Gliessman SR (1983) Allelopathic interactions in crop/weed mixture: applications for weed management. J Chem Ecol 9(8):991–999. doi:10.1007/BF00982206

    Article  Google Scholar 

  • Gregorich EG, Carter MR, Angers DA et al (1994) Towards a minimum data set to assess soil organic-matter quality in agricultural soils. Can J Soil Sci 74:367–385

    Article  CAS  Google Scholar 

  • Hamm U, Gronefeld F, Halpin D (2002) Analysis of the European market for organic food. Dissertation, University of Wales Aberystwyth, Aberystwyth

    Google Scholar 

  • Ibrahim M, Ahmad N, Anwar SA et al (2004) Micronutrient effects on citrus-fruit yield growing on calcareous soils. In: Ibrahim M, Anwar SA, Ahmad N et al (eds) Proceedings of the symposium on plant-nutrition management for horticultural crops under water-stress conditions, organised by Soil Science Society of Pakistan at Agricultural Research Institute Sariab, Quetta, Pakistan, 5–6 Oct 2004

    Google Scholar 

  • IFOAM – International Federation of Organic Agriculture Movements (2011) http://www.ifoam. Accessed 20 Aug 2011

  • International Trade Centre (2002a) Overview of world markets for organic food and beverages. ITC, Geneva. http://www.intracen.org/. Accessed 18 July 2011

  • International Trade Centre (2002b) The United States market for organic food and beverages. ITC, Geneva. http://www.intracen.org/. Accessed 18 July 2011

  • Intrigliolo F, Roccuzzo G, Lacertosa G et al (1999) Agrumi: modalità di campionamento per terreno, foglie, acque d’irrigazione e frutti. In: Intrigliolo F (ed) Valori analitici di riferimento. C.U.E.C.M, Catania, p 86 (In Italian)

    Google Scholar 

  • Intrigliolo F, Montemurro N, Roccuzzo G et al (2000) Field survey on soil fertility and plant nutritional status in organic and conventional citrus orchards. In: International Association for the Optimisation of Plant Nutrition – IAOPN, National Research Centre – NRC (eds) Book of abstracts, X international colloquium for the optimization of plant nutrition, Cairo

    Google Scholar 

  • Isermeyer H (1952) Estimation of soil respiration in closed jars. In: Alef K, Nannipieri P (eds) Method in applied soil microbiology and biochemistry. Academic, London

    Google Scholar 

  • Jarvis SC, Stockdale EA, Shepherd MA et al (1996) Nitrogen mineralization in temperate agricultural soils: processes and measurement. Adv Agron 57:187–235. doi:10.1016/S0065-2113(08), 60925-6

    Article  CAS  Google Scholar 

  • JAS (2001) Japanese Agriculture Standard. http://www.maff.go.jp/e/jas/specific/organic.html. Accessed 24 Oct 2011

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, McLaren AD (eds) Soil biochemistry, vol 5. Marcel Dekker, New York

    Google Scholar 

  • Jeschke WD, Hartung W (2000) Root-shoot interactions in mineral nutrition. Plant Soil 226:57–69. doi:10.1023/A:1026431408238

    Article  CAS  Google Scholar 

  • Karlen DL, Andrews SS, Doran JW (2001) Soil quality: current concepts and applications. Adv Agron 74:1–39

    Article  CAS  Google Scholar 

  • Kilcher L (2005) Organic citrus: challenges in production and trade. In: Cuaderno de Resumenes I Conferencia Internacional de Citricultura Ecologica BIOCIITRICS, pp 22–27

    Google Scholar 

  • Koo RCJ (1985) Potassium nutrition of citrus. In: Munson RS (ed) Potassium in agriculture. American Society of Agronomy, Madison

    Google Scholar 

  • Lavelle P, Dugdale R, Scholes R et al (2005) Nutrient cycling. In: Hassan R et al (eds) Ecosystems and human well-being: current state and trends: findings of the condition and trends working group of the millennium ecosystem assessment, vol 1. Island Press, Washington, DC

    Google Scholar 

  • Liu P (2003) World markets for organic citrus and citrus juices – current market situation and medium-term prospects. FAO, Rome. http://www.fao.org/DOCREP/006/J1850E/j1850e00.htm#. Last Accessed 20 sept 2011

    Google Scholar 

  • Lowrance R, Stinner BR, House GS (1984) Agricultural ecosystems. Macmillan, New York

    Google Scholar 

  • Mäder P, Flieβbach A, Dubois D et al (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697. doi:10.1126/science.1071148

    Article  PubMed  Google Scholar 

  • Mäder P, Flieβbach A, Dubois D et al (2006) The DOK experiment (Switzerland). In: Raupp J, Pekrun C, Oltmanns M et al (eds) Long-term field experiments in organic farming. ISOFAR – Verlag Dr Köster, Berlin

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mattos D, Quaggio JA, Cantarella H et al (2006) Response of young citrus trees on selected rootstocks to nitrogen, phosphorus and potassium fertilization. J Plant Nutr 29:1371–1385. doi:10.1080/01904160600830159

    Article  CAS  Google Scholar 

  • Menino MR, Carranca C, de Varennes A (2007) Distribution and remobilization of nitrogen in young non-bearing orange trees grown under Mediterranean conditions. J Plant Nutr 30:1083–1096. doi:10.1080/01904160701394543

    Article  CAS  Google Scholar 

  • Mostafa FMA (2006) Improving fruit quality of organically produced fruits of Egyptian lime by applying some biofertilizers and gibberellic acid. Assiut J Agric Sci 37(2):83–100

    Google Scholar 

  • NOP Final Rule (2000) National Organic Program regulation. http://www.ams.usda.gov/AMSv1.0/nop. Accessed 24 Oct 2011

  • Palm CA, Swift MJ (2002) Soil fertility as an ecosystem concept. In: Accomplishments and changing paradigm towards the 21st century. Proceedings of the 17th world congress of soil science, Bangkok, Thailand, 14–21 Aug 2002, Paper No. 1988

    Google Scholar 

  • Pankhurst CE, Hawke BG, McDonald HJ et al (1995) Evaluation of soil biological properties as potential bioindicators of soil health. Aust J Exp Agric 35:1015–1028. doi:10.1071/EA9951015

    Article  Google Scholar 

  • Park J, Seaton RAF (1996) Integrative research and sustainable agriculture. Agric Syst 50:81–100

    Article  Google Scholar 

  • Probst B, Schuler C, Joergensen RJ (2008) Vineyard soils under organic and conventional management – microbial biomass and activity indexes and their relation to soil chemical properties. Biol Fertil Soils 44:443–450. doi:10.1007/s00374-007-0225-7

    Article  Google Scholar 

  • Rapisarda P, Intelisano S (1996) Sample preparation for vitamin C analysis of pigmented orange juices. Ital J Food Sci 3:251–256

    Google Scholar 

  • Rapisarda P, Bellomo SE, Intelisano S (2001) Storage temperature effects on blood orange fruit quality. J Agric Food Chem 49:3230–3235. doi:10.1021/jf010032l

    Article  PubMed  CAS  Google Scholar 

  • Rapisarda P, Calabretta ML, Romano G et al (2005) Nitrogen metabolism components as a tool to discriminate between organic and conventional citrus fruits. J Agric Food Chem 53:2664–2669. doi:10.1021/jf048733g

    Article  PubMed  CAS  Google Scholar 

  • Rapisarda P, Camin F, Faedi W et al (2010) New markers for the traceability of organic fruit. Acta Hortic 873:173–183

    Google Scholar 

  • Reganold JP, Glover JD, Andrews PK et al (2001) Sustainability of three apple production systems. Nature 410:926–930. doi:10.1038/35073574

    Article  PubMed  CAS  Google Scholar 

  • Reuter DJ, Robinson JB (1986) Plant analysis: an interpretation manual. Inkata Press, Melbourne

    Google Scholar 

  • Sahrawat KL, Ponnamperuma FN (1978) Measurement of exchangeable NH +4 in tropical land soils. Soil Sci Soc Am J 42:282–283

    Article  CAS  Google Scholar 

  • Schloter M, Munch JC, Tittarelli F (2005) Managing soil quality. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality (editorial board Burns RG, Dilly O, Fliessbach A, Lemanceau P, Lynch JM, Nannipieri P, Tittarelli F, Van Elsas JD). CABI Publishing, Cambridge

    Google Scholar 

  • Schmid O, Padel S, Halberg N et al (2009) Strategic research agenda for organic food and farming. Technological Platform Organics, IFOAM EU Group, Brussels, p 116

    Google Scholar 

  • Six J, Feller C, Denef K et al (2002) Soil organic matter, biota and aggregation in temperate and tropical soils – Effect of no-tillage. Agronomie (Paris) 22:755–775. doi:10.1051/agro:2002043

    Google Scholar 

  • Soliani L (2004) Manuale di statistica per la ricerca e la professione, Charter 8, pp 1–34 (In Italian). Available at: www.dsa.unipr.it/soliani/soliani.html. Accessed 12 Oct 2011

  • Spedding CRW (1975) The biology of agricultural systems. Academic, London

    Google Scholar 

  • Springer U, Klee J, 1 (1954) Prüfung der Leistungsfähigkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlemstoffs mittels Chromschwefelsäure sowie Vorschlag einer neuen Schnellmethode. Z Pflanzenernähr Dang Bodenk 64 (In German)

    Google Scholar 

  • Srivastava AK, Singh S, Marathe RH (2002) Organic citrus: soil fertility and plant nutrition. J Sustain Agric 19:5–29. doi:10.1300/J064v19n03_03

    Article  Google Scholar 

  • Toselli M (2010) Nutritional implications of organic management in fruit tree production. Acta Hortic 868:41–48

    CAS  Google Scholar 

  • Trinchera A, Tittarelli F, Intrigliolo F (2007) Study of organic matter evolution in citrus compost by isoelectrofocusing technique. Compost Sci Util 15(2):101–110

    CAS  Google Scholar 

  • USDA Citrus update (2011) Citrus: World markets and trade. http://www.fas.usda.gov/htp/2011_July_Citrus.pdf. Last Accessed XXXXX.

  • van Diepeningen AD, de Vos OJ, Korhtals GW et al (2006) Effects of organic versus conventional management on chemical and biochemical parameters in agricultural soils. Appl Soil Ecol 31:120–135. doi:10.1016/j.apsoil.2005.03.003

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wardowski W, Soule J, Grierson W et al (1979) Minimum quality (maturity) standards. In: Florida citrus quality tests. Florida Cooperative Extension Service, IFAS, University of Florida, Gainesville

    Google Scholar 

  • Watson CA, Stockdale EA (2000) Nutrient budgets on organic farms: a review of published data. http://orgprints.org/8380. Last Accessed 20 sept 2011

  • Watson CA, Atkinson D, Gosling P et al (2002a) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247

    Article  Google Scholar 

  • Watson CA, Bengtsson H, Ebbesvik M et al (2002b) A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manag 18:264–273

    Article  Google Scholar 

  • Whitmore AP (2007) Determination of the mineralization of nitrogen from composted chicken manure as affected by temperature. Nutr Cycl Agroecosyst 77:225–232. doi:10.1007/s10705-006-9059-1

    Article  Google Scholar 

  • Willer H, Kilcher L (eds) (2009) The world of organic agriculture: statistics and emerging trends 2009. IFOAM/FiBL, Bonn/Frick

    Google Scholar 

  • Yaseen M, Ahmad M (2010) Nutrition management in citrus: effect of multinutrients foliar feeding on the yield of Kinnow at different locations. Pak J Bot 42(3):1863–1870

    Google Scholar 

  • Zook EG, Lehmann J (1968) Mineral composition of fruits II: nitrogen, calcium, magnesium, phosphorus, potassium, aluminium, boron, copper, iron, manganese and sodium. J Am Diet Assoc 52:225–231

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Canali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Canali, S., Roccuzzo, G., Tittarelli, F., Ciaccia, C., Fiorella, S., Intrigliolo, F. (2012). Organic Citrus: Soil Fertility and Plant Nutrition Management. In: Srivastava, A. (eds) Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_24

Download citation

Publish with us

Policies and ethics