Skip to main content

Bacterial Proteases and Virulence

  • Chapter
  • First Online:
Regulated Proteolysis in Microorganisms

Part of the book series: Subcellular Biochemistry ((SCBI,volume 66))

Abstract

Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maurizi MR, Clark WP, Kim SH, Gottesman S (1990) Clp P represents a unique family of serine proteases. J Biol Chem 265(21):12546–12552

    PubMed  CAS  Google Scholar 

  2. Wang J, Hartling JA, Flanagan JM (1997) The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91(4):447–456

    Article  PubMed  CAS  Google Scholar 

  3. Woo KM, Chung WJ, Ha DB, Goldberg AL et al (1989) Protease Ti from Escherichia coli requires ATP hydrolysis for protein breakdown but not for hydrolysis of small peptides. J Biol Chem 264(4):2088–2091

    PubMed  CAS  Google Scholar 

  4. Gur E, Ottofuelling R, Dougan DA (2013) Machines of destruction – AAA+ proteases and the adaptors that control them. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:3–33

    Google Scholar 

  5. Frees D, Savijoki K, Varmanen P, Ingmer H (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63(5):1285–1295

    Article  PubMed  CAS  Google Scholar 

  6. Kim YI, Levchenko I, Fraczkowska K, Woodruff RV et al (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 8(3):230–233

    Article  PubMed  CAS  Google Scholar 

  7. Butler SM, Festa RA, Pearce MJ, Darwin KH (2006) Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol 60(3):553–562

    Article  PubMed  CAS  Google Scholar 

  8. Frees D, Chastanet A, Qazi S, Sorensen K et al (2004) Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54(5):1445–1462

    Article  PubMed  CAS  Google Scholar 

  9. Molière N, Turgay K (2013) General and regulatory proteolysis in Bacillus subtilis. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:3–33

    Google Scholar 

  10. Frees D, Qazi SN, Hill PJ, Ingmer H (2003) Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48(6):1565–1578

    Article  PubMed  CAS  Google Scholar 

  11. Michel A, Agerer F, Hauck CR, Herrmann M et al (2006) Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 188(16):5783–5796

    Article  PubMed  CAS  Google Scholar 

  12. Bottcher T, Sieber SA (2008) Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 130(44):14400–14401

    Article  PubMed  CAS  Google Scholar 

  13. Jelsbak L, Ingmer H, Valihrach L, Cohn MT et al (2010) The chaperone ClpX stimulates expression of Staphylococcus aureus protein A by Rot dependent and independent pathways. PLoS One 5(9):e12752

    Article  PubMed  CAS  Google Scholar 

  14. Gaillot O, Pellegrini E, Bregenholt S, Nair S et al (2000) The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol Microbiol 35(6):1286–1294

    Article  PubMed  CAS  Google Scholar 

  15. Gaillot O, Bregenholt S, Jaubert F, Di Santo JP et al (2001) Stress-induced ClpP serine protease of Listeria monocytogenes is essential for induction of listeriolysin O-dependent protective immunity. Infect Immun 69(8):4938–4943

    Article  PubMed  CAS  Google Scholar 

  16. Nair S, Milohanic E, Berche P (2000) ClpC ATPase is required for cell adhesion and invasion of Listeria monocytogenes. Infect Immun 68(12):7061–7068

    Article  PubMed  CAS  Google Scholar 

  17. Borezee E, Pellegrini E, Beretti JL, Berche P (2001) SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes. Microbiology 147(Pt 11):2913–2923

    PubMed  CAS  Google Scholar 

  18. Robertson GT, Ng WL, Foley J, Gilmour R et al (2002) Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol 184(13):3508–3520

    Article  PubMed  CAS  Google Scholar 

  19. Kwon HY, Ogunniyi AD, Choi MH, Pyo SN et al (2004) The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge. Infect Immun 72(10):5646–5653

    Article  PubMed  CAS  Google Scholar 

  20. Ibrahim YM, Kerr AR, Silva NA, Mitchell TJ (2005) Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae. Infect Immun 73(2):730–740

    Article  PubMed  CAS  Google Scholar 

  21. Webb C, Moreno M, Wilmes-Riesenberg M, Curtiss R 3rd et al (1999) Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium. Mol Microbiol 34(1):112–123

    Article  PubMed  CAS  Google Scholar 

  22. Yamamoto T, Sashinami H, Takaya A, Tomoyasu T et al (2001) Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun 69(5):3164–3174

    Article  PubMed  CAS  Google Scholar 

  23. Thomsen LE, Olsen JE, Foster JW, Ingmer H (2002) ClpP is involved in the stress response and degradation of misfolded proteins in Salmonella enterica serovar Typhimurium. Microbiology 148(Pt 9):2727–2733

    PubMed  CAS  Google Scholar 

  24. Fang FC, Libby SJ, Buchmeier NA, Loewen PC et al (1992) The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A 89(24):11978–11982

    Article  PubMed  CAS  Google Scholar 

  25. Micevski D, Dougan DA (2013) Proteolytic regulation of stress response pathways in Escherichia coli. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:105–128

    Google Scholar 

  26. Zhou D, Galan J (2001) Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 3(14–15):1293–1298

    Article  PubMed  CAS  Google Scholar 

  27. Ramos HC, Rumbo M, Sirard JC (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12(11):509–517

    Article  PubMed  CAS  Google Scholar 

  28. Tomoyasu T, Ohkishi T, Ukyo Y, Tokumitsu A et al (2002) The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol 184(3):645–653

    Article  PubMed  CAS  Google Scholar 

  29. Tomoyasu T, Takaya A, Isogai E, Yamamoto T (2003) Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Mol Microbiol 48(2):443–452

    Article  PubMed  CAS  Google Scholar 

  30. Lucas RL, Lostroh CP, DiRusso CC, Spector MP et al (2000) Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. J Bacteriol 182(7):1872–1882

    Article  PubMed  CAS  Google Scholar 

  31. Kage H, Takaya A, Ohya M, Yamamoto T (2008) Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. J Bacteriol 190(7):2470–2478

    Article  PubMed  CAS  Google Scholar 

  32. Takaya A, Suzuki M, Matsui H, Tomoyasu T et al (2003) Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice. Infect Immun 71(2):690–696

    Article  PubMed  CAS  Google Scholar 

  33. Iyoda S, Watanabe H (2005) ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 187(12):4086–4094

    Article  PubMed  CAS  Google Scholar 

  34. Brotz-Oesterhelt H, Beyer D, Kroll HP, Endermann R et al (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11(10):1082–1087

    Article  PubMed  CAS  Google Scholar 

  35. Hinzen B, Raddatz S, Paulsen H, Lampe T et al (2006) Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. ChemMedChem 1(7):689–693

    Article  PubMed  CAS  Google Scholar 

  36. Kirstein J, Hoffmann A, Lilie H, Schmidt R et al (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1(1):37–49

    Article  PubMed  CAS  Google Scholar 

  37. Sass P, Josten M, Famulla K, Schiffer G et al (2011) Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci U S A 108(42):17474–17479

    Article  PubMed  CAS  Google Scholar 

  38. Lee BG, Park EY, Lee KE, Jeon H et al (2010) Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17(4):471–478

    Article  PubMed  CAS  Google Scholar 

  39. Li DH, Chung YS, Gloyd M, Joseph E et al (2010) Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem Biol 17(9):959–969

    Article  PubMed  CAS  Google Scholar 

  40. Gominet M, Seghezzi N, Mazodier P (2011) Acyl depsipeptide (ADEP) resistance in Streptomyces. Microbiology 157(Pt 8):2226–2234

    Article  PubMed  CAS  Google Scholar 

  41. Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S et al (2011) The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem Int Ed Engl 50(26):5889–5891

    Article  PubMed  CAS  Google Scholar 

  42. Morsczeck C, Prokhorova T, Sigh J, Pfeiffer M et al (2008) Streptococcus pneumoniae: proteomics of surface proteins for vaccine development. Clin Microbiol Infect 14(1):74–81

    Article  PubMed  CAS  Google Scholar 

  43. Cao J, Li D, Gong Y, Yin N et al (2009) Caseinolytic protease: a protein vaccine which could elicit serotype-independent protection against invasive pneumococcal infection. Clin Exp Immunol 156(1):52–60

    Article  PubMed  CAS  Google Scholar 

  44. Wu K, Zhang X, Shi J, Li N et al (2010) Immunization with a combination of three pneumococcal proteins confers additive and broad protection against Streptococcus pneumoniae Infections in mice. Infect Immun 78(3):1276–1283

    Article  PubMed  CAS  Google Scholar 

  45. Matsui H, Suzuki M, Isshiki Y, Kodama C et al (2003) Oral immunization with ATP-dependent protease-deficient mutants protects mice against subsequent oral challenge with virulent Salmonella enterica serovar typhimurium. Infect Immun 71(1):30–39

    Article  PubMed  CAS  Google Scholar 

  46. Splichal I, Rychlik I, Gregorova D, Sebkova A et al (2007) Susceptibility of germ-free pigs to challenge with protease mutants of Salmonella enterica serovar Typhimurium. Immunobiology 212(7):577–582

    Article  PubMed  CAS  Google Scholar 

  47. Rotanova TV, Botos I, Melnikov EE, Rasulova F et al (2006) Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci 15(8):1815–1828

    Article  PubMed  CAS  Google Scholar 

  48. Cha SS, An YJ, Lee CR, Lee HS et al (2010) Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J 29(20):3520–3530

    Article  PubMed  CAS  Google Scholar 

  49. Tsilibaris V, Maenhaut-Michel G, Van Melderen L (2006) Biological roles of the Lon ATP-dependent protease. Res Microbiol 157(8):701–713

    Article  PubMed  CAS  Google Scholar 

  50. Takaya A, Kubota Y, Isogai E, Yamamoto T (2005) Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression. Mol Microbiol 55(3):839–852

    Article  PubMed  CAS  Google Scholar 

  51. Gur E, Sauer RT (2008) Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev 22(16):2267–2277

    Article  PubMed  CAS  Google Scholar 

  52. Gur E (2013) The Lon AAA+ protease. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:35–51

    Google Scholar 

  53. Boddicker JD, Jones BD (2004) Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells. Infect Immun 72(4):2002–2013

    Article  PubMed  CAS  Google Scholar 

  54. Takaya A, Tomoyasu T, Tokumitsu A, Morioka M et al (2002) The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol 184(1):224–232

    Article  PubMed  CAS  Google Scholar 

  55. Schechter LM, Lee CA (2001) AraC/XylS family members, HilC and HilD, directly bind and derepress the Salmonella typhimurium hilA promoter. Mol Microbiol 40(6):1289–1299

    Article  PubMed  CAS  Google Scholar 

  56. Jackson MW, Silva-Herzog E, Plano GV (2004) The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol 54(5):1364–1378

    Article  PubMed  CAS  Google Scholar 

  57. Herbst K, Bujara M, Heroven AK, Opitz W et al (2009) Intrinsic thermal sensing controls proteolysis of Yersinia virulence regulator RovA. PLoS Pathog 5(5):e1000435

    Article  PubMed  CAS  Google Scholar 

  58. Takaya A, Tabuchi F, Tsuchiya H, Isogai E et al (2008) Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease. J Bacteriol 190(12):4181–4188

    Article  PubMed  CAS  Google Scholar 

  59. Bertani I, Rampioni G, Leoni L, Venturi V (2007) The Pseudomonas putida Lon protease is involved in N-acyl homoserine lactone quorum sensing regulation. BMC Microbiol 7:71

    Article  PubMed  CAS  Google Scholar 

  60. Lipinska B, Fayet O, Baird L, Georgopoulos C (1989) Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171(3):1574–1584

    PubMed  CAS  Google Scholar 

  61. Rosch JW, Caparon MG (2005) The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes. Mol Microbiol 58(4):959–968

    Article  PubMed  CAS  Google Scholar 

  62. Lipinska B, Zylicz M, Georgopoulos C (1990) The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol 172(4):1791–1797

    PubMed  CAS  Google Scholar 

  63. Krojer T, Garrido-Franco M, Huber R, Ehrmann M et al (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416(6879):455–459

    Article  PubMed  CAS  Google Scholar 

  64. Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97(3):339–347

    Article  PubMed  CAS  Google Scholar 

  65. Krojer T, Sawa J, Schafer E, Saibil HR et al (2008) Structural basis for the regulated protease and chaperone function of DegP. Nature 453(7197):885–890

    Article  PubMed  CAS  Google Scholar 

  66. Clausen T, Kaiser M, Huber R, Ehrmann M (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12(3):152–162

    Article  PubMed  CAS  Google Scholar 

  67. Krojer T, Pangerl K, Kurt J, Sawa J et al (2008) Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc Natl Acad Sci U S A 105(22):7702–7707

    Article  PubMed  CAS  Google Scholar 

  68. Subrini O, Betton JM (2009) Assemblies of DegP underlie its dual chaperone and protease function. FEMS Microbiol Lett 296(2):143–148

    Article  PubMed  CAS  Google Scholar 

  69. Johnson K, Charles I, Dougan G, Pickard D et al (1991) The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 5(2):401–407

    Article  PubMed  CAS  Google Scholar 

  70. Humphreys S, Stevenson A, Bacon A, Weinhardt AB et al (1999) The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 67(4):1560–1568

    PubMed  CAS  Google Scholar 

  71. Baumler AJ, Kusters JG, Stojiljkovic I, Heffron F (1994) Salmonella typhimurium loci involved in survival within macrophages. Infect Immun 62(5):1623–1630

    PubMed  CAS  Google Scholar 

  72. Elzer PH, Phillips RW, Kovach ME, Peterson KM et al (1994) Characterization and genetic complementation of a Brucella abortus high-temperature-requirement A (htrA) deletion mutant. Infect Immun 62(10):4135–4139

    PubMed  CAS  Google Scholar 

  73. Yamamoto T, Hanawa T, Ogata S, Kamiya S (1996) Identification and characterization of the Yersinia enterocolitica gsrA gene, which protectively responds to intracellular stress induced by macrophage phagocytosis and to extracellular environmental stress. Infect Immun 64(8):2980–2987

    PubMed  CAS  Google Scholar 

  74. Lewis C, Skovierova H, Rowley G, Rezuchova B et al (2009) Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection. Microbiology 155(Pt 3):873–881

    Article  PubMed  CAS  Google Scholar 

  75. Brondsted L, Andersen MT, Parker M, Jorgensen K et al (2005) The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl Environ Microbiol 71(6):3205–3212

    Article  PubMed  CAS  Google Scholar 

  76. Novik V, Hofreuter D, Galan JE (2010) Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect Immun 78(8):3540–3553

    Article  PubMed  CAS  Google Scholar 

  77. Champion OL, Karlyshev AV, Senior NJ, Woodward M et al (2010) Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. J Infect Dis 201(5):776–782

    PubMed  CAS  Google Scholar 

  78. Baek KT, Vegge CS, Brondsted L (2011) HtrA chaperone activity contributes to host cell binding in Campylobacter jejuni. Gut Pathog 3:13

    Article  PubMed  CAS  Google Scholar 

  79. Baek KT, Vegge CS, Skorko-Glonek J, Brondsted L (2011) Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology. Appl Environ Microbiol 77(1):57–66

    Article  PubMed  CAS  Google Scholar 

  80. Jong WS, ten Hagen-Jongman CM, Ruijter E, Orru RV et al (2010) YidC is involved in the biogenesis of the secreted autotransporter hemoglobin protease. J Biol Chem 285(51):39682–39690

    Article  PubMed  CAS  Google Scholar 

  81. Bodelon G, Marin E, Fernandez LA (2009) Role of periplasmic chaperones and BamA (YaeT/Omp85) in folding and secretion of intimin from enteropathogenic Escherichia coli strains. J Bacteriol 191(16):5169–5179

    Article  PubMed  CAS  Google Scholar 

  82. Ruiz-Perez F, Henderson IR, Leyton DL, Rossiter AE et al (2009) Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J Bacteriol 191(21):6571–6583

    Article  PubMed  CAS  Google Scholar 

  83. Humphries RM, Griener TP, Vogt SL, Mulvey GL et al (2010) N-acetyllactosamine-induced retraction of bundle-forming pili regulates virulence-associated gene expression in enteropathogenic Escherichia coli. Mol Microbiol 76(5):1111–1126

    Article  PubMed  CAS  Google Scholar 

  84. Vogt SL, Nevesinjac AZ, Humphries RM, Donnenberg MS et al (2010) The Cpx envelope stress response both facilitates and inhibits elaboration of the enteropathogenic Escherichia coli bundle-forming pilus. Mol Microbiol 76(5):1095–1110

    Article  PubMed  CAS  Google Scholar 

  85. Baud C, Gutsche I, Willery E, de Paepe D et al (2011) Membrane-associated DegP in Bordetella chaperones a repeat-rich secretory protein. Mol Microbiol 80(6):1625–1636

    Article  PubMed  CAS  Google Scholar 

  86. Baud C, Hodak H, Willery E, Drobecq H et al (2009) Role of DegP for two-partner secretion in Bordetella. Mol Microbiol 74(2):315–329

    Article  PubMed  CAS  Google Scholar 

  87. Purdy GE, Fisher CR, Payne SM (2007) IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA. J Bacteriol 189(15):5566–5573

    Article  PubMed  CAS  Google Scholar 

  88. Purdy GE, Hong M, Payne SM (2002) Shigella flexneri DegP facilitates IcsA surface expression and is required for efficient intercellular spread. Infect Immun 70(11):6355–6364

    Article  PubMed  CAS  Google Scholar 

  89. Bumann D, Aksu S, Wendland M, Janek K et al (2002) Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun 70(7):3396–3403

    Article  PubMed  CAS  Google Scholar 

  90. Lower M, Weydig C, Metzler D, Reuter A et al (2008) Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA. PLoS One 3(10):e3510

    Article  PubMed  CAS  Google Scholar 

  91. Hoy B, Lower M, Weydig C, Carra G et al (2010) Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 11(10):798–804

    Article  PubMed  CAS  Google Scholar 

  92. Wu X, Lei L, Gong S, Chen D et al (2011) The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol. BMC Microbiol 11:87

    Article  PubMed  CAS  Google Scholar 

  93. Cole JN, Aquilina JA, Hains PG, Henningham A et al (2007) Role of group A Streptococcus HtrA in the maturation of SpeB protease. Proteomics 7(24):4488–4498

    Article  PubMed  CAS  Google Scholar 

  94. Lyon WR, Caparon MG (2004) Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect Immun 72(3):1618–1625

    Article  PubMed  CAS  Google Scholar 

  95. Rigoulay C, Entenza JM, Halpern D, Widmer E et al (2005) Comparative analysis of the roles of HtrA-like surface proteases in two virulent Staphylococcus aureus strains. Infect Immun 73(1):563–572

    Article  PubMed  CAS  Google Scholar 

  96. Biswas S, Biswas I (2005) Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect Immun 73(10):6923–6934

    Article  PubMed  CAS  Google Scholar 

  97. Wilson RL, Brown LL, Kirkwood-Watts D, Warren TK et al (2006) Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence. Infect Immun 74(1):765–768

    Article  PubMed  CAS  Google Scholar 

  98. Chitlaru T, Zaide G, Ehrlich S, Inbar I et al (2011) HtrA is a major virulence determinant of Bacillus anthracis. Mol Microbiol 81(6):1542–1559

    Article  PubMed  CAS  Google Scholar 

  99. Arvidson S (2006) Extracellular enzymes. In: Fischetti VA (ed) Gram-positive pathogens (2nd edn.). ASM Press.

    Google Scholar 

  100. Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48(6):1429–1449

    Article  PubMed  CAS  Google Scholar 

  101. Shaw L, Golonka E, Potempa J, Foster SJ (2004) The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150(Pt 1):217–228

    Article  PubMed  CAS  Google Scholar 

  102. Drapeau GR (1978) Role of metalloprotease in activation of the precursor of staphylococcal protease. J Bacteriol 136(2):607–613

    PubMed  CAS  Google Scholar 

  103. Lindsay JA, Foster SJ (1999) Interactive regulatory pathways control virulence determinant production and stability in response to environmental conditions in Staphylococcus aureus. Mol Gen Genet 262(2):323–331

    Article  PubMed  CAS  Google Scholar 

  104. Chan PF, Foster SJ (1998) The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus 8325–4. Microbiology 144(Pt 9):2469–2479

    Article  PubMed  CAS  Google Scholar 

  105. Rice K, Peralta R, Bast D, de Azavedo J et al (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun 69(1):159–169

    Article  PubMed  CAS  Google Scholar 

  106. Nickerson N, Ip J, Passos DT, McGavin MJ (2010) Comparison of Staphopain A (ScpA) and B (SspB) precursor activation mechanisms reveals unique secretion kinetics of proSspB (Staphopain B), and a different interaction with its cognate Staphostatin, SspC. Mol Microbiol 75(1):161–177

    Article  PubMed  CAS  Google Scholar 

  107. Nickerson NN, Joag V, McGavin MJ (2008) Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain. Mol Microbiol 69(6):1530–1543

    Article  PubMed  CAS  Google Scholar 

  108. Massimi I, Park E, Rice K, Muller-Esterl W et al (2002) Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J Biol Chem 277(44):41770–41777

    Article  PubMed  CAS  Google Scholar 

  109. Rzychon M, Sabat A, Kosowska K, Potempa J et al (2003) Staphostatins: an expanding new group of proteinase inhibitors with a unique specificity for the regulation of staphopains Staphylococcus spp. cysteine proteinases. Mol Microbiol 49(4):1051–1066

    Article  PubMed  CAS  Google Scholar 

  110. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3(12):948–958

    Article  PubMed  CAS  Google Scholar 

  111. Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6(12):484–488

    Article  PubMed  CAS  Google Scholar 

  112. McGavin MJ, Zahradka C, Rice K, Scott JE (1997) Modification of the Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect Immun 65(7):2621–2628

    PubMed  CAS  Google Scholar 

  113. Karlsson A, Saravia-Otten P, Tegmark K, Morfeldt E et al (2001) Decreased amounts of cell wall-associated protein A and fibronectin-binding proteins in Staphylococcus aureus sarA mutants due to up-regulation of extracellular proteases. Infect Immun 69(8):4742–4748

    Article  PubMed  CAS  Google Scholar 

  114. McAleese FM, Walsh EJ, Sieprawska M, Potempa J et al (2001) Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276(32):29969–29978

    Article  PubMed  CAS  Google Scholar 

  115. Potempa J, Dubin A, Korzus G, Travis J (1988) Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J Biol Chem 263(6):2664–2667

    PubMed  CAS  Google Scholar 

  116. Ohbayashi T, Irie A, Murakami Y, Nowak M et al (2011) Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus. Microbiology 157(Pt 3):786–792

    Article  PubMed  CAS  Google Scholar 

  117. Mayer-Scholl A, Averhoff P, Zychlinsky A (2004) How do neutrophils and pathogens interact? Curr Opin Microbiol 7(1):62–66

    Article  PubMed  CAS  Google Scholar 

  118. Greenberg S, Grinstein S (2002) Phagocytosis and innate immunity. Curr Opin Immunol 14(1):136–145

    Article  PubMed  CAS  Google Scholar 

  119. Smagur J, Guzik K, Magiera L, Bzowska M et al (2009) A new pathway of staphylococcal pathogenesis: apoptosis-like death induced by Staphopain B in human neutrophils and monocytes. J Innate Immun 1(2):98–108

    Article  PubMed  CAS  Google Scholar 

  120. Kulig P, Zabel BA, Dubin G, Allen SJ et al (2007) Staphylococcus aureus-derived staphopain B, a potent cysteine protease activator of plasma chemerin. J Immunol 178(6):3713–3720

    PubMed  CAS  Google Scholar 

  121. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    Article  PubMed  CAS  Google Scholar 

  122. Marti M, Trotonda MP, Tormo-Mas MA, Vergara-Irigaray M et al (2010) Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect 12(1):55–64

    Article  PubMed  CAS  Google Scholar 

  123. Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4(4):e1000052

    Article  PubMed  CAS  Google Scholar 

  124. Reed SB, Wesson CA, Liou LE, Trumble WR et al (2001) Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect Immun 69(3):1521–1527

    Article  PubMed  CAS  Google Scholar 

  125. Coulter SN, Schwan WR, Ng EY, Langhorne MH et al (1998) Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol 30(2):393–404

    Article  PubMed  CAS  Google Scholar 

  126. Bisno AL, Stevens DL (1996) Streptococcal infections of skin and soft tissues. N Engl J Med 334(4):240–245

    Article  PubMed  CAS  Google Scholar 

  127. Rasmussen M, Bjorck L (2002) Proteolysis and its regulation at the surface of Streptococcus pyogenes. Mol Microbiol 43(3):537–544

    Article  PubMed  CAS  Google Scholar 

  128. Collin M, Olsen A (2001) Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun 69(11):7187–7189

    Article  PubMed  CAS  Google Scholar 

  129. Collin M, Olsen A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20(12):3046–3055

    Article  PubMed  CAS  Google Scholar 

  130. Collin M, Svensson MD, Sjoholm AG, Jensenius JC et al (2002) EndoS and SpeB from Streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect Immun 70(12):6646–6651

    Article  PubMed  CAS  Google Scholar 

  131. Chaussee MS, Phillips ER, Ferretti JJ (1997) Temporal production of streptococcal erythrogenic toxin B (streptococcal cysteine proteinase) in response to nutrient depletion. Infect Immun 65(5):1956–1959

    PubMed  CAS  Google Scholar 

  132. von Pawel-Rammingen U, Johansson BP, Bjorck L (2002) IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 21(7):1607–1615

    Article  Google Scholar 

  133. von Pawel-Rammingen U, Bjorck L (2003) IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr Opin Microbiol 6(1):50–55

    Article  CAS  Google Scholar 

  134. Hidalgo-Grass C, Mishalian I, Dan-Goor M, Belotserkovsky I et al (2006) A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J 25(19):4628–4637

    Article  PubMed  CAS  Google Scholar 

  135. Sumby P, Zhang S, Whitney AR, Falugi F et al (2008) A chemokine-degrading extracellular protease made by group A Streptococcus alters pathogenesis by enhancing evasion of the innate immune response. Infect Immun 76(3):978–985

    Article  PubMed  CAS  Google Scholar 

  136. Zinkernagel AS, Timmer AM, Pence MA, Locke JB et al (2008) The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe 4(2):170–178

    Article  PubMed  CAS  Google Scholar 

  137. Gryllos I, Tran-Winkler HJ, Cheng MF, Chung H et al (2008) Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc Natl Acad Sci U S A 105(43):16755–16760

    Article  PubMed  CAS  Google Scholar 

  138. Bryan JD, Shelver DW (2009) Streptococcus agalactiae CspA is a serine protease that inactivates chemokines. J Bacteriol 191(6):1847–1854

    Article  PubMed  CAS  Google Scholar 

  139. Bever RA, Iglewski BH (1988) Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J Bacteriol 170(9):4309–4314

    PubMed  CAS  Google Scholar 

  140. Heck LW, Morihara K, McRae WB, Miller EJ (1986) Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect Immun 51(1):115–118

    PubMed  CAS  Google Scholar 

  141. Castellino FJ, Ploplis VA (2005) Structure and function of the plasminogen/plasmin system. Thromb Haemost 93(4):647–654

    PubMed  CAS  Google Scholar 

  142. Beaufort N, Seweryn P, de Bentzmann S, Tang A et al (2010) Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa. Biochem J 428(3):473–482

    Article  PubMed  CAS  Google Scholar 

  143. Leduc D, Beaufort N, de Bentzmann S, Rousselle JC et al (2007) The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis. Infect Immun 75(8):3848–3858

    Article  PubMed  CAS  Google Scholar 

  144. Haiko J, Laakkonen L, Juuti K, Kalkkinen N et al (2010) The omptins of Yersinia pestis and Salmonella enterica cleave the reactive center loop of plasminogen activator inhibitor 1. J Bacteriol 192(18):4553–4561

    Article  PubMed  CAS  Google Scholar 

  145. Ramu P, Lobo LA, Kukkonen M, Bjur E et al (2008) Activation of pro-matrix metalloproteinase-9 and degradation of gelatin by the surface protease PgtE of Salmonella enterica serovar Typhimurium. Int J Med Microbiol 298(3–4):263–278

    Article  PubMed  CAS  Google Scholar 

  146. Galvan EM, Lasaro MA, Schifferli DM (2008) Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 76(4):1456–1464

    Article  PubMed  CAS  Google Scholar 

  147. Guina T, Yi EC, Wang H, Hackett M et al (2000) A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 182(14):4077–4086

    Article  PubMed  CAS  Google Scholar 

  148. Schmidtchen A, Frick IM, Andersson E, Tapper H et al (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46(1):157–168

    Article  PubMed  CAS  Google Scholar 

  149. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K et al (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48(12):4673–4679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank the Danish Council for Independent Research, Natural Sciences for support grant number: 272-08-0371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Ingmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frees, D., Brøndsted, L., Ingmer, H. (2013). Bacterial Proteases and Virulence. In: Dougan, D. (eds) Regulated Proteolysis in Microorganisms. Subcellular Biochemistry, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5940-4_7

Download citation

Publish with us

Policies and ethics