Skip to main content
  • 2077 Accesses

Abstract

Starting with the introduction of electron transport in conventional pn junction and field-effect transistor, we first discuss semiclassical versus quantum mechanical considerations about carrier transport in solids after which we focus on the tunneling of an electron wave through a potential barrier in resonant tunneling diode and heterostructure barrier varactor. Quantum mechanical engineering of nano-scale transistors, including high-electron-mobility transistor and single-electron transistor, are then presented for higher carrier mobility and better current-voltage control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, Wien, p 8

    Book  Google Scholar 

  2. Esaki L (1958) New phenomenon in narrow germanium pn junctions. Phys Rev 109:603–604

    Article  ADS  Google Scholar 

  3. Capasso F (ed) (1990) Physics of quantum electron devices. Springer, Berlin

    Google Scholar 

  4. Esaki L (1985) Semiconductor superlattices and quantum wells. In: Chadi JD, Harrison WA (eds) Proc 17th int conf on the physics of semiconductors, San Francisco, 1984. Springer, New York, pp 473–483

    Google Scholar 

  5. Heiblum M, Nathan MI, Thomas DC, Knoedler CM (1985) Direct observation of ballistic transport in GaAs. Phys Rev Lett 55:2200–2203

    Article  ADS  Google Scholar 

  6. Bonnefoi AR, Chow DH, McGill TC (1985) Inverted base-collector tunnel transistors. Appl Phys Lett 47:888–890

    Article  ADS  Google Scholar 

  7. Luryi S, Capasso F (1985) Resonant tunneling of two-dimensional electrons through a quantum wire: a negative transconductance device. Appl Phys Lett 47:1347–1349

    Article  ADS  Google Scholar 

  8. Yoshimura H, Schulman JN, Sakaki H (1990) Charge accumulation in a double-barrier resonant-tunneling structure studied by photoluminescence and photoluminescence-excitation spectroscopy. Phys Rev Lett 64:2422–2425

    Article  ADS  Google Scholar 

  9. Luryi S (1985) Frequency limit of double-barrier resonant-tunneling oscillators. Appl Phys Lett 47:490–492

    Article  ADS  Google Scholar 

  10. Sollner TCLG, Brown ER, Goodhue WD, Le HQ (1990) In: Capasso F (ed) Physics of quantum electron devices. Springer, Berlin, p 145

    Google Scholar 

  11. Goldman VJ, Tsui DC, Cunningham JE (1987) Observation of intrinsic bistability in resonant-tunneling structures. Phys Rev Lett 58:1256–1259

    Article  ADS  Google Scholar 

  12. Sollner TCLG, Goldman VJ, Cunningham JE (1987) Comment on ‘Observation of intrinsic bistability in resonant-tunneling structures’. Phys Rev Lett 59:1622–1623

    Article  ADS  Google Scholar 

  13. Boric O, Tolmunen TJ, Kollberg E, Frerking MA (1992) Anomalous capacitance of quantum well double-barrier diodes. Int J Infrared Millim Waves 13:799–814

    Article  ADS  Google Scholar 

  14. Sollner TCLG, Goodhue WD, Tannenwald PE, Parker CD, Peck DD (1983) Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Appl Phys Lett 43:588–590

    Article  ADS  Google Scholar 

  15. Hou Y, Wang W-P, Li N, Lu W, Fu Y (2008) Effects of series and parallel resistances on the current-voltage characteristics of small-area air-bridge resonant tunneling diode. J Appl Phys 104, 074508

    Article  ADS  Google Scholar 

  16. Zhu B, Chao KA (1987) Phonon modes and Raman scattering in GaAs/Ga1−x Al x As. Phys Rev B 36:4906–4914

    Article  ADS  Google Scholar 

  17. Goldman VJ, Tsui DC, Cunningham JE (1987) Evidence for LO-phonon-emission-assisted tunneling in double-barrier heterostructures. Phys Rev B 36:7635–7637

    Article  ADS  Google Scholar 

  18. Wingreen NS, Jacobsen KW, Wilkins JW (1988) Resonant tunneling with electron-phonon interaction: an exactly solvable model. Phys Rev Lett 61:1396–1399

    Article  ADS  Google Scholar 

  19. Rydberg A, Grönqvist H, Kollberg E (1990) Millimeter- and submillimeter-wave multipliers using quantum-barrier-varactor (QBV) diodes. IEEE Electron Device Lett 11:373–375

    Article  ADS  Google Scholar 

  20. Kollberg E, Stake J, Dillner L (1996) Heterostructure barrier varactors at submillimeter waves. Philos Trans R Soc A, Math Phys Eng Sci 354:2383–2398

    Article  ADS  Google Scholar 

  21. Reddy VK, Neikirk DP (1993) High breakdown voltage AlAs/InGaAs quantum barrier varactor diodes. Electron Lett 29:464–466

    Article  ADS  Google Scholar 

  22. Hui S, Zhang WM, Domier CW, Luhmann NC Jr, Sjogren LB, Liu XLH (1995) Novel concept for improved nonlinear transmission line performance. IEEE Trans Microw Theory Tech 43:780–789

    Article  ADS  Google Scholar 

  23. Lieneweg U, Hancock BR, Maserjian J (1987) Barrier-intrinsic-N+ (BIN) diodes for near-millimeter wave generation. In: Conference digest: 20th int conf infrared and millimeter waves. IEEE Press, New York, pp 6–7

    Google Scholar 

  24. Liu HXL, Qin XH, Sjogren LB, Chumg E, Domier CW, Luhmann NC Jr (1992) Monolithic high-power millimeter-wave quasi-optical frequency multiplier arrays using quantum barrier devices. IEEE Trans Electron Devices 39:2668

    Article  ADS  Google Scholar 

  25. Rahal A, Bosisio RG, Boch E, Rogers C, Ovey J (1996) Planar V-band frequency tripler for indoor communication systems. Proc SPIE 2842:209–214

    Article  ADS  Google Scholar 

  26. Batey J, Wright SL (1986) Energy band alignment in GaAs:(Al, Ga)As heterostructures: the dependence on alloy composition. J Appl Phys 59:200–209

    Article  ADS  Google Scholar 

  27. Landheer D, Liu HC, Buchanan M, Stoner R (1989) Tunneling through AlAs barriers: Gamma-X transfer current. Appl Phys Lett 54:1784–1786

    Article  ADS  Google Scholar 

  28. Krishnamurthi K, Nilsen SM, Harrison RG (1994) GaAs single-barrier varactors for millimeter-wave triplers: guidelines for enhanced performance. IEEE Trans Microw Theory Tech 42:2512–2516

    Article  ADS  Google Scholar 

  29. Dillner L, Stake J, Kollberg E (1997) Analysis of symmetric varactor frequency multipliers. Microw Opt Technol Lett 15:26–29

    Article  Google Scholar 

  30. Stern F, Howard W (1967) Properties of semiconductor surface inversion layers in electric quantum limit. Phys Rev 163:816–835

    Article  ADS  Google Scholar 

  31. Dingle R, Störmer HL, Gossard AC, Wiegmann W (1978) Electron mobilities in modulation-doped semiconductor superlattices. Appl Phys Lett 33:665–667

    Article  ADS  Google Scholar 

  32. Hess K (1979) Impurity and phonon scattering in layered structures. Appl Phys Lett 35:484–486

    Article  ADS  Google Scholar 

  33. Hiyamizu S, Saito J, Nanbu K, Ishikawa T (1983) Improved electron mobility higher than 106 cm2/Vs in selectively doped GaAs/N-AlGaAs heterostructures grown by MBE. Jpn J Appl Phys 22:L609–L611

    Article  ADS  Google Scholar 

  34. Mimura T, Hiyamizu S, Fujii T, Nanbu K (1980) A new field-effect transistor with selectively doped GaAs/n-Al x Ga1−x As heterojunctions. Jpn J Appl Phys 19:L225–L227

    Article  ADS  Google Scholar 

  35. Walukiewicz W, Ruda HE, Lagowski J, Gatos HC (1984) Electron mobility limits in a two-dimensional electron gas: GaAs-GaAlAs heterostructures. Phys Rev B 29:4818–4820

    Article  ADS  Google Scholar 

  36. Walukiewicz W, Ruda HE, Lagowski J, Gatos HC (1984) Electron mobility in modulation-doped heterostructures. Phys Rev B 30:4571–4582

    Article  ADS  Google Scholar 

  37. Yokoyama K, Hess K (1986) Monte Carlo study of electronic transport in Al1−x Ga x As/GaAs single-well heterostructures. Phys Rev B 33:5595–5606

    Article  ADS  Google Scholar 

  38. Hirakawa K, Sakaki H (1986) Mobility of the two-dimensional electron gas at selectively doped n-type Al x Ga1−x As/GaAs heterojunctions with controlled electron concentrations. Phys Rev B 33:8291–8303

    Article  ADS  Google Scholar 

  39. Price PJ (1981) Two-dimensional electron transport in semiconductor layers. I. Phonon scattering. Ann Phys 133:217–239

    Article  ADS  Google Scholar 

  40. Zeindl HP, Wegehaupt T, Eisele I, Oppolzer H, Reisinger H, Tempel G, Koch F (1987) Growth and characterization of a delta-function doping layer in Si. Appl Phys Lett 50:1164–1166

    Article  ADS  Google Scholar 

  41. Ni W-X, Hansson GV, Sundgren J-E, Hultman L, Wallenberg LR, Yao J-Y, Markert LC, Greene JE (1992) Delta-function-shaped Sb-doping profiles in Si(001) obtained using a low-energy accelerated-ion source during molecular-beam epitaxy. Phys Rev B 46:7551–7558

    Article  ADS  Google Scholar 

  42. Sze SM (ed) (1990) High-speed semiconductor devices. Wiley, New York

    Google Scholar 

  43. Manasreh MO (ed) (1993) Semiconductor quantum wells and superlattices for long-wavelength infrared detectors. Artech House, Boston

    Google Scholar 

  44. Iwai H (1993) CMOS device architecture and technology for the 0.25 micron to 0.025 micron generations. In: Borel J, Gentil P, Noblance JP, Nouailhat A, Verdone M (eds) Proceedings of the 23rd European solid state device research conference, Grenoble, France, 1993. Frontieres, Gif-sur-Yvette, pp 513–520

    Google Scholar 

  45. Chandrakasan AP, Sheng S, Brodersen RW (1992) Low-power CMOS digital design. IEEE J Solid-State Circuits 27:473–484

    Article  Google Scholar 

  46. Haydock R, Heine V, Kelly MJ (1972) Electronic structure based on the local atomic environment for tight-binding bands. J Phys C, Solid State Phys 5:2845–2858

    Article  ADS  Google Scholar 

  47. Fu Y, Xu W, Zheng Z-B (1987) Impurity induced vibrations in light doped silicon. Solid State Commun 62:163–167

    Article  ADS  Google Scholar 

  48. Friedel J (1954) Electronic structure of primary solid solutions in metals. Adv Phys 3:446–507

    Article  ADS  Google Scholar 

  49. Kittel C (1963) Quantum theory of solids. Wiley, New York, p 339

    Google Scholar 

  50. Heine V, Weaire D (1970) Pseudopotential theory of cohesion and structure. Solid State Phys 24:249–463

    Article  Google Scholar 

  51. Ono M, Saito M, Yoshitomi T, Fiegna C, Ohguro T, Iwai H (1993) Sub-50 nm gate length n-MOSFETs with 10 nm phosphorus source and drain junctions. In: Proceeding of the international electron devices meeting, pp 119–122

    Chapter  Google Scholar 

  52. Ono M, Saito M, Yoshitomi T, Fiegna C, Ohguro T, Iwai H (1995) A 40 nm gate length n-MOSFET. IEEE Trans Electron Devices 42:1822–1830

    Article  ADS  Google Scholar 

  53. Han J, Ferry D, Newman P (1990) Ultra-submicrometer-gate AlGaAs/GaAs HEMTs. IEEE Electron Device Lett 11:209–211

    Article  ADS  Google Scholar 

  54. Hashizume T, Okada H, Hasegawa H (1996) Quantum transport in a Schotty in-plane-gate controlled GaAs/AlGaAs quantum well wires. Physica B 227:42–45

    Article  ADS  Google Scholar 

  55. Omura Y, Kurihara K, Takahashi Y, Ishiyama T, Nakajima Y, Izumi K (1997) 50-nm channel nMOSFET/SIMOX with an ultrathin 2- or 6-nm thick silicon layer and their significant features of operations. IEEE Electron Device Lett 18:190–193

    Article  ADS  Google Scholar 

  56. Pelouard JL, Teissier R, Matine N, Pardo F (1997) Dynamic behaviour of the metal heterojunction bipolar transistor. In: International conference on indium phosphide and related materials. IEEE Press, New York, pp 169–172

    Google Scholar 

  57. Ando T (1996) Mesoscopic transport in low dimensional systems. In: 23rd international conference on the physics of semiconductors. World Scientific, Singapore, pp 59–68

    Google Scholar 

  58. Dollfus P (1997) Si/Si1−x Ge x heterostructures: electron transport and field effect transistor operating using Monte Carlo simulation. J Appl Phys 82:3911–3916

    Article  ADS  Google Scholar 

  59. Lake R, Klimeck G, Bowen RC, Jovanovic D (1997) Single and multiband of quantum electron transport through layered semiconductor devices. J Appl Phys 81:7845–7869

    Article  ADS  Google Scholar 

  60. Vasileska D, Eldridge T, Ferry DK (1996) Quantum transport: silicon inversion layers and InAlAs-InGaAs heterostructures. J Vac Sci Technol B 14:2780–2785

    Article  ADS  Google Scholar 

  61. Nedjalkov M, Dimov I, Bordone P, Brunetti R, Jacoboni C (1997) Using the Wigner function for quantum transport in device simulation. Math Comput Model 25:33–53

    Article  MathSciNet  MATH  Google Scholar 

  62. Fu Y, Mu Y, Willander M (1996) Quantum ballistic transport in a dual-gate Si transistor. IEEE Trans Electron Devices 43:2030–2032

    Article  ADS  Google Scholar 

  63. Madhukar A (1990) The nature of molecular beam epitaxy and consequences for quantum microstructures. In: Capasso F (ed) Physics of quantum electron devices. Springer, Berlin, Chap. 2

    Google Scholar 

  64. Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437–672

    Article  ADS  Google Scholar 

  65. Fu Y, Willander M (1991) Lateral-nonuniformity effect on the I-V spectrum in a double-barrier resonant-tunneling structure. Phys Rev B 44:13631–13634

    Article  ADS  Google Scholar 

  66. Fu Y, Willander M, Stake J, Dillner L, Kollberg EL (2000) Carrier conduction through the quantum barrier region in a heterostructure barrier varactor induced by an AC bias. Superlattices Microstruct 28:135–141

    Article  ADS  Google Scholar 

  67. Bohr M (2001) MOS transistor scaling challenges. In: Proceedings of the international symposium ULSI process integration II. ECS proceedings, vol 2001-2, pp 463–473

    Google Scholar 

  68. Lindert N, Chang L, Choi Y-K, Anderson EH, Lee W-C, King T-J, Boker J, Hu C (2001) Sub-60-nm quasi-planar FinFETs fabricated using a simplified process. IEEE Electron Device Lett 22:487–489

    Article  ADS  Google Scholar 

  69. Celler GK, Cristoloveanu S (2003) Frontiers of silicon-on-insulator. J Appl Phys 93:4955–4978

    Article  ADS  Google Scholar 

  70. Jurczak M, Skotnicki T, Paoli M, Tormen B, Martins J, Regolini JL, Dutartre D, Ribot P, Lenoble D, Pantel R, Monfray S (2000) Silicon-On-Nothing (SON)—an innovative process for advanced CMOS. IEEE Trans Electron Devices 47:2179–2187

    Article  ADS  Google Scholar 

  71. Plummer JD (2000) Silicon MOSFETs (conventional and non-traditional) at the scaling limit. In: Proc of device research conference, pp 3–7

    Google Scholar 

  72. Schultz T, Rosner W, Risch L, Korbel A, Langmann U (2001) Short-channel vertical sidewall MOSFETs. IEEE Trans Electron Devices 48:1783–1788

    Article  ADS  Google Scholar 

  73. Simmons JA, Blount MA, Moon JS, Baca WE, Reno Jl, Hafich MJ (1997) Unipolar complementary bistable memories using gate-controlled negative differential resistance in a 2D-2D quantum tunneling transistor. In: Electron devices meeting, IEDM technical digest, pp. 755–758 (cat no 97CH36103)

    Chapter  Google Scholar 

  74. Matsuoka H, Ichiguchi T, Yoshimura T, Takeda E (1994) Coulomb blockade in the inversion layer of a Si metal-oxide-semiconductor field-effect transistor with a dual-gate structure. Appl Phys Lett 64:586–588

    Article  ADS  Google Scholar 

  75. Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57–61

    Article  ADS  Google Scholar 

  76. Iwai H CMOS Downsizing toward sub-10 nm. www.iwai.ae.titech.ac.jp/pdf/iwaironbun/ulis03.pdf

  77. Monfray S, Souifi A, Boeuf F, Ortolland C, Poncet A, Militaru L, Chanemougame D, Skotnicki T (2003) Coulomb-blockade in nanometric Si-film silicon-on-nothing (SON) MOSFETs. IEEE Trans Nanotechnol 2:295–300

    Article  ADS  Google Scholar 

  78. Peters MG, den Hartog SG, Dijkhuis JI, Buyk OJA, Molenkamp LW (1998) Single electron tunneling and suppression of short-channel effects in submicron silicon transistors. J Appl Phys 84:5052–5056

    Article  ADS  Google Scholar 

  79. Ionescu AM, Declercq MJ, Mahapatra S, Banerjee K, Gautier J (2002) Few electron devices: towards hybrid CMOS-SET integrated circuits. In: Proceedings of the 39th conference on design automation, New Orleans, Louisiana, USA, pp 88–93

    Google Scholar 

  80. Ishikuro H, Hiramoto T (1997) Energy spectrum of the quantum-dot in a Si single-electron-device. In: 55th annual device research conference digest, Fort Collins, CO, USA, 23–25, June 1997, pp 84–85 (cat no 97TH8279)

    Google Scholar 

  81. Ishikuro H, Hiramoto T (1997) Quantum mechanical effects in the silicon quantum dot in a single-electron transistor. Appl Phys Lett 71:3691–3693

    Article  ADS  Google Scholar 

  82. Ishikuro H, Hiramoto T (1999) Fabrication of nano-scale point contact metal-oxide-semiconductor field-effect-transistors using micrometer-scale design rule. Jpn J Appl Phys 38:396–398

    Article  ADS  Google Scholar 

  83. Saitoh M, Hiramoto T (2001) Suppression of series parasitic resistance and observation of quantum effects in a silicon single-electron transistor. In: Proceedings of the 2001 1st IEEE conference on nanotechnology, IEEE-NANO 2001, Maui, HI, USA, 28–30 October 2001, pp 243–247 (cat no 01EX516)

    Google Scholar 

  84. Saitoh M, Saito T, Inukai T, Hiramoto T (2001) Transport spectroscopy of the ultrasmall silicon quantum dot in a single-electron transistor. Appl Phys Lett 79:2025–2027

    Article  ADS  Google Scholar 

  85. Saitoh M, Takahashi N, Ishikuro H, Hiramoto T (2001) Large electron addition energy above 250 meV in a silicon quantum dot in a single-electron transistor. Jpn J Appl Phys 40:2010–2012

    Article  ADS  Google Scholar 

  86. Wang TH, Li HW, Zhou JM (2001) Si single-electron transistors with in-plane point-contact metal gates. Appl Phys Lett 78:2160–2162

    Article  ADS  Google Scholar 

  87. Dutta A, Kimura M, Honda Y, Otobe N, Itoh A, Oda S (1997) Fabrication and electrical characteristics of single electron tunneling devices based on Si quantum dots prepared by plasma processing. Jpn J Appl Phys 36:4038–4041

    Article  ADS  Google Scholar 

  88. Dutta A, Lee SP, Hayafune Y, Hatatani S, Oda S (2000) Single-electron tunneling devices based on silicon quantum dots fabricated by plasma process. Jpn J Appl Phys 39:264–267

    Article  ADS  Google Scholar 

  89. Dutta A, Lee SP, Hatatani S, Oda S (1999) Silicon-based single-electron memory using a multiple-tunnel junction fabricated by electron-beam direct writing. Appl Phys Lett 75:1422–1424

    Article  ADS  Google Scholar 

  90. Fu Y, Willander M, Dutta A, Oda S (2000) The gate bias vs. the number of electrons confined in Si dot based single electron transistor. Proc SPIE 3975(1–2):1027–1032

    Google Scholar 

  91. Dutta A, Oda S, Fu Y, Willander M (2000) Electron transport in nanocrystalline Si based single electron transistors. Jpn J Appl Phys 39:4647–4650

    Article  ADS  Google Scholar 

  92. Fu Y, Willander M, Dutta A, Oda S (2000) Carrier conduction in Si-nanocrystal-based single-electron transistor—I. Effect of gate bias. Superlattices Microstruct 28:177–187

    Article  ADS  Google Scholar 

  93. Fu Y, Willander M, Dutta A, Oda S (2000) Carrier conduction in Si-nanocrystal-based single-electron transistor—II. Effect of drain bias. Superlattices Microstruct 28:189–198

    Article  ADS  Google Scholar 

  94. Dutta A, Hayafune Y, Oda S (2000) Single electron memory devices based on plasma-derived silicon nanocrystals. Jpn J Appl Phys 39:L855–L857

    Article  ADS  Google Scholar 

  95. Hutchby JA, Bourianoff GI, Zhirnov VV, Brewer JE (2002) Extending the road beyond CMOS. IEEE Circuits Devices Mag 18:28–41

    Article  Google Scholar 

  96. Montemerlo MS, Love JC, Opiteck GJ, Goldhaber-Gordon D, Ellenbogen JC (1996) Technologies and designs for electronic nanocomputers. MITRE, McLean

    Google Scholar 

  97. Goldhaber-Gordon D, Montemerlo MS, Love JC, Opiteck GJ, Ellenbogen JC (1997) Overview of nanoelectronic devices. Proc IEEE 85:521–540

    Article  Google Scholar 

  98. Toffoli T, Margolus N (1987) Cellular automata machines: a new environment for modeling. MIT, Cambridge

    Google Scholar 

  99. Tanamoto T, Katoh R (1996) The possibility of higher temperature operation in quantum cellular automata (QCA). IEICE Trans Electron E79-C:1550–1556

    Google Scholar 

  100. Lent CS, Tougaw PD, Porod W (1993) Bistable saturation in coupled quantum dots for quantum cellular automata. Appl Phys Lett 62:714–716

    Article  ADS  Google Scholar 

  101. Lent CC, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4:49–57

    Article  ADS  Google Scholar 

  102. Hu J, Ouyang M, Yang P, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48–51

    Article  ADS  Google Scholar 

  103. Johnson AT (1999) Electronics of single-wall carbon nanotubes. In: Wuorinen JH (ed) IEEE international solid-state circuits conference, ISSCC. Digest of technical papers, San Francisco, CA, USA, 15–17 February 1999, 1st edn. pp 210–211

    Google Scholar 

  104. Kong J, Zhou C, Yenilmez E, Dai H (2000) Alkaline metal-doped n-type semiconducting nanotubes as quantum dots. Appl Phys Lett 77:3977–3979

    Article  ADS  Google Scholar 

  105. Yao Z, Postma HWC, Balents L, Dekker C (1999) Carbon nanotube intramolecular junctions. Nature 402:273–276

    Article  ADS  Google Scholar 

  106. Matsumoto K, Gotoh K (2001) Nano-processing using carbon nano tube probes and its device applications. In: International semiconductor device research symposium. Symposium proceedings, Washington, DC, USA, 5–7 December 2001, pp 354–357 (cat no 01EX497)

    Google Scholar 

  107. Kanda A, Ootuka Y, Tsukagoshi K, Aoyagi Y (2001) Electron transport in metal/multiwall carbon nanotube/metal structures (metal = Ti or Pt/Au). Appl Phys Lett 79:1354–1356

    Article  ADS  Google Scholar 

  108. Roschier L, Penttila J, Martin M, Hakonen P, Paalanen M, Tapper U, Kauppinen EI, Journet C, Bernier P (1999) Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. Appl Phys Lett 75:728–730

    Article  ADS  Google Scholar 

  109. Kong J, Cao J, Dai H, Anderson E (2002) Chemical profiling of single nanotubes: intramolecular p-n-p junctions and on-tube single-electron transistors. Appl Phys Lett 80:73–75

    Article  ADS  Google Scholar 

  110. Miura N, Numaguchi T, Yamada A, Konagai M, Shirakashi J-I (1997) Single-electron tunneling through amorphous carbon dots array. Jpn J Appl Phys 36:1619–1621

    Article  ADS  Google Scholar 

  111. Wada Y (1995) A proposal of atom/molecule switching devices. Optoelectron, Dev Technol 10:205–220

    Google Scholar 

  112. Ahmad S (1998) Semiconductor switching devices-future trends. Def Sci J (India) 48:45–59

    Google Scholar 

  113. Tanamoto T (2000) Quantum gates by coupled quantum dots and measurement procedure in field-effect-transistor structure. Fortschr Phys 48:1005–1021

    Article  Google Scholar 

  114. Schon JH (2001) High mobilities in organic semiconductors: basic science and technology. Synth Met 122:157–160

    Article  Google Scholar 

  115. Schon JH, Kloc Ch, Batlogg B (2001) Ambipolar organic devices for complementary logic. Synth Met 122:195–197

    Article  Google Scholar 

  116. Okada H, Hasegawa H (2001) Novel single electron memory device using metal nano-dots and Schottky in-plane gate quantum wire transistors. Jpn J Appl Phys 40:2797–2800

    Article  ADS  Google Scholar 

  117. Ahlers F-J, Krupenin VA, Lotkhov SV, Niemeyer J, Presnov DE, Scherer H, Weimann T, Wolf H, Zorin AB (1996) Investigation of the offset charge noise in single electron tunneling devices. In: Braun A (ed) Conference on precision electromagnetic measurements digest, Braunschweig, Germany, 17–21 June 1996, pp 507–508 (cat no 96CH35956)

    Chapter  Google Scholar 

  118. Krupenin VA, Presnov DE, Savvateev MN (1998) Noise in Al single electron transistors of stacked design. J Appl Phys 84:3212–3215

    Article  ADS  Google Scholar 

  119. Furlan M, Heinzel T, Jeanneret B, Lotkhov SV (2000) Coulomb blockade peak statistics influenced by background charge configuration. J Low Temp Phys 118:297–306

    Article  ADS  Google Scholar 

  120. Klein DL, Roth R, Lim AKL, Alivisatos AP, McEuen PL (1997) A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389:699–701

    Article  ADS  Google Scholar 

  121. Altmeyer S, Hamidi A, Spangenberg B, Kurz H (1997) 77 K single electron transistors fabricated with 0.1 μm technology. J Appl Phys 81:8118–8120

    Article  ADS  Google Scholar 

  122. Pettersson J, Wahlgren P, Delsing P, Haviland DB, Claeson T, Rorsman N, Zirath H (1996) Extending the high-frequency limit of a single-electron transistor by on-chip impedance transformation. Phys Rev B 53:R13272–R13274

    Article  ADS  Google Scholar 

  123. Visscher EH, Verbrugh SM, Lindeman J, Hadley P, Mooij JE (1995) Fabrication of multilayer single-electron tunneling devices. Appl Phys Lett 66:305–307

    Article  ADS  Google Scholar 

  124. Ford EM, Ahmed H (1998) Fabrication of self-aligned metallic Coulomb blockade devices on Si nanowires. J Vac Sci Technol B 16:3800–3803

    Article  Google Scholar 

  125. Weimann T, Scherer H, Wolf H, Krupenin VA, Niemeyer J (1998) A new technology for metallic multilayer single electron tunneling devices. Microelectron Eng 41–42:559–562

    Article  Google Scholar 

  126. Matsumoto K (1998) Room temperature single electron transistor made by STM/AFM nano-oxidation process. In: Hou HQ, Sah RE, Pearton SJ, Ren F, Wada K (eds) Proceedings of the symposium on light emitting devices for optoelectronic applications and twenty-eighth state-of-the-art program on compound semiconductors, San Diego, CA, USA, 3–8 May 1998, pp 68–77

    Google Scholar 

  127. Kikutani T, Aoki N, Hong CU, Hori H, Yamada S (1998) Quantum transport in ferromagnetic dot structure embedded in semiconductor quantum wires. Physica B 249–251:513–517

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fu, Y. (2014). Electronic Quantum Devices. In: Physical Models of Semiconductor Quantum Devices. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7174-1_4

Download citation

Publish with us

Policies and ethics