Skip to main content

Studies on the Mechanism of Allylmetal-Acetal Additions

  • Chapter
Selectivities in Lewis Acid Promoted Reactions

Part of the book series: NATO ASI Series ((ASIC,volume 289))

Abstract

The mechanism and stereochemical course of addition of allylsilanes and allylstannanes to acetals has been investigated. Using an intramolecular process to model the possible transition states the reaction stereochemistry has been shown to depend on the nature of the Lewis acid and acetal structure, but not on the allylmetal. Trimethylsilyl tritiate, triflic acid and BF3·OEt2 gave highly selective reactions while SnCl4 and TiCl4 did not. A spectroscopic investigation into the complexes formed between dimethyl acetals and various Lewis acids showed divergent results ranging from no observable complexation of the acetal with TMSOTf to complete, stoichiometry-dependent complexation with SnCl4. Finally, the duality of mechanism and its stereochemical consequences in reactions of acetals has been demonstrated. Using enol ethers as oxocarbenium ion precursors, the results show conclusively that the model dimethyl acetal does not react with TMSOTf via an oxocarbenium ion. As in classic nucleophilic aliphatic substitution, stereochemistry is used as a probe for differentiating SN1 and SN2 mechanisms in acetal reactions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1982, 21, 555.

    Article  Google Scholar 

  2. Hoffmann, R. W. Ibid. 1987, 26, 489.

    Article  Google Scholar 

  3. Yamamoto, Y. Accounts Chem. Res. 1987, 20, 243.

    Article  CAS  Google Scholar 

  4. Yamamoto, Y. Aldrichim. Acta 1987, 30, 45.

    Google Scholar 

  5. Masamune, S. Angew. Chem., Int. Ed. Engl. 1980, 19, 557.

    Article  Google Scholar 

  6. Denmark, S. E.; Weber, E. J. Helv. Chim. Acta 1983, 66, 1551.

    Article  Google Scholar 

  7. Weber, E. J., Ph.D. Thesis, University of Illinois, Urbana, IL, 1985.

    Google Scholar 

  8. Denmark, S. E.; Weber, E. J. J. Am. Chem. Soc. 1984, 106, 7970.

    Article  CAS  Google Scholar 

  9. Denmark, S. E.; Henke, B. R.; Weber, E. J. J. Am. Chem. Soc. 1987, 109, 2512.

    Article  CAS  Google Scholar 

  10. Yamamoto, Y.; Nishii, S.; Yamada, J. J. Am. Chem. Soc. 1986, 108, 7116.

    Article  CAS  Google Scholar 

  11. Seebach, D.; Imwinkelreid, R.; Stucky, G. Helv. Chim. Acta 1987, 70, 448.

    Article  CAS  Google Scholar 

  12. Murata, S.; Suzuki, M.; Noyori, R. Tetrahedron 1988, 44, 4259.

    Article  CAS  Google Scholar 

  13. Mukaiyama, T.; Murakami, M. Synthesis 1987, 1043.

    Google Scholar 

  14. Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976, 941.

    Google Scholar 

  15. Sakurai, H. Pure and Appl. Chem. 1982, 54, 1.

    Article  CAS  Google Scholar 

  16. Sakurai, H.; Sasaki, K.; Hosomi, A. Tetrahedron Lett. 1981, 22, 745.

    Article  CAS  Google Scholar 

  17. Noyori, R.; Murata, S.; Suzuki, M. Terahedron 1981, 37, 3899.

    Article  CAS  Google Scholar 

  18. Mukaiyama, T.; Nagaoka, H.; Murakami, M.; Ohshima, M. Chem. Lett. 1985, 977.

    Google Scholar 

  19. Hosomi, A.; Ando, M.; Sakurai, H. Chem. Lett. 1986, 365.

    Google Scholar 

  20. For leading references see: (a) Andrew, R. G.; Cannow, R. E.; Johnson, W. S.; Elliott, J. D.; Ramazani, S. Tetrahedron Lett. 1987, 28, 6535.

    Article  Google Scholar 

  21. Bartlett, P. D.; Elliott, J. D.; Johnson, W. S. J. Am. Chem. Soc. 1983, 105, 2088.

    Article  CAS  Google Scholar 

  22. Mori, A.; Ishihara, K.; Arai, L; Yamamoto, H. Tetrahedron 1987, 43, 755.

    Article  CAS  Google Scholar 

  23. Pillot, J.-P.; Deleris, G.; Dunogues, J.; Calas, R. J. Org. Chem. 1979, 44, 3397.

    Article  CAS  Google Scholar 

  24. Ueno, Y.; Miyano, T.; Okawara, M. Tetrahedron Lett. 1982, 23, 443.

    Article  CAS  Google Scholar 

  25. An intermediate hybrid of these limits is also possible.

    Google Scholar 

  26. Cremer, D.; Gauss, J.; Childs, R. F.; Blackburn, C. J. Am. Chem. Soc. 1985, 107, 2435.

    Article  CAS  Google Scholar 

  27. Webb, J. G. K.; Yung, D. K. Can. J. Chem. 1983, 61, 488.

    Article  CAS  Google Scholar 

  28. Chang, Y.; Cho, M. J.; Euser, B. A.; Kresge, A. J. J. Am. Chem. Soc. 1986, 108, 4192.

    Article  Google Scholar 

  29. Burt, R. A.; Chiang, Y.; Chwang, W. K.; Kresge, A. J.; Okuyama, T.; Tang, Y. S.; Yin, Y. Ibid. 1987, 109, 3787.

    Article  CAS  Google Scholar 

  30. Earnshaw, C.; Wallis, C. J.; Warren, S. J. Chem. Soc., Perkin Trans 1 1979, 3099.

    Article  Google Scholar 

  31. Chauzov, V. A.; Studner, Y. N.; Rudnilskaya, L. S.; Fokin, A. V. Zh. Obshch. Khim. 1986, 56, 2553.

    CAS  Google Scholar 

  32. Nagata, W.; Yoshioka, M. Org. Synth. 1972, 52, 90.

    CAS  Google Scholar 

  33. Schmidt, J. P.; Piraux, M.; Phillete, J. F. J. Org. Chem. 1975, 40, 1586.

    Article  Google Scholar 

  34. Torr, R. S.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1983, 1179.

    Google Scholar 

  35. Burgi, H. B.; Dunitz, J. D.; Lehn, J.-M.; Wipff, G. Tetrahedron 1974, 30, 1563.

    Article  Google Scholar 

  36. Paddon-Row, M. N.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1982, 104, 7162.

    Article  CAS  Google Scholar 

  37. Houk, K. N. Pure Appl. Chem. 1983, 55, 277.

    Article  CAS  Google Scholar 

  38. Kahn, S. D.; Pau, C. F.; Chamberlin, A. R.; Hehre, W. J. Ibid. 1987, 109, 650.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Denmark, S.E., Wilson, T.M. (1989). Studies on the Mechanism of Allylmetal-Acetal Additions. In: Schinzer, D. (eds) Selectivities in Lewis Acid Promoted Reactions. NATO ASI Series, vol 289. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2464-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2464-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7611-1

  • Online ISBN: 978-94-009-2464-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics