Skip to main content

Abstract

Copper is well known as a biochemically essential transition element. Attributable to both its kinetic and redox activities, it plays a key role in electron transfer reactions. In-vivo oxygen chemistry is dependent on and regulated by copper proteins: all reduction states of dioxygen are connected with copper proteins and related copper compounds (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebers G. Papyrus Ebers: die Arzneimittel der alten Ägypter in hieratischer Schrift. Leipzig: W. Engelmann; 1875.

    Google Scholar 

  2. Ebbell B. The Papyrus Ebers. London: Oxford University Press; 1937.

    Google Scholar 

  3. Knoll H, Küssner A, Locher A et al. Plinius der Ältere: Über Kupfer und Kupferlegierungen, Projektgruppe Plinius, Georg-Agricola-Gesellschaft. Düsseldorf: Glückauf; 1985.

    Google Scholar 

  4. Rahn-Koltermann G, Glemser O, Oltrogge D, Fuchs R. Grünspan. Naturwiss Rundschau. 1993;46:222–227.

    Google Scholar 

  5. Weser U. Biochemical basis of the use of copper in ancient Egyptian and Roman medicine. In: Black J, ed. Recent Advances in the Conservation and Analysis of Artifacts. London: Summer Schools Press; 1987:189–193.

    Google Scholar 

  6. Sorenson JRJ. Copper chelates as possible active forms of the antiarthritic agents. J Med Chem. 1976;19:135–148.

    PubMed  CAS  Google Scholar 

  7. Deuschle U, Weser U. Copper and inflammation. Prog Clin Biochem Med. 1985;2:97–130.

    CAS  Google Scholar 

  8. Bannister JV, Calabrese L. Assays for superoxide dismutase. Meth Biochem Anal. 1987;32:279–312.

    CAS  Google Scholar 

  9. Gärtner A, Weser U. Molecular and functional aspects of superoxide dismutases. Top Curr Chem. 1986;132:1–61.

    Google Scholar 

  10. Sigel H. Zur katalatischen und peroxidatischen Aktivität von Cu2+-Komplexen. Angew Chem. 1969;81:161–194.

    Google Scholar 

  11. Lekchiri A, Brighli M, Methenitis C, Morcellet J, Morcellet M. Complexation of a polyelectrolyte derived from glutamic acid with copper(II). Catalase-like activity of the complexes. J Inorg Biochem. 1991;44:229–238.

    CAS  Google Scholar 

  12. Thederahn TB, Kuwabara MD, Larsen TA, Sigman DS. Nuclease activity of 1,10-phenan-throline-copper: kinetic mechanism. J Am Chem Soc. 1989;111:4941–4946.

    CAS  Google Scholar 

  13. Veal JM, Rill RL. Noncovalent DNA binding of bis(1,10-phenanthroline)copper(I) and related compounds. Biochemistry. 1991;30:1132–1140.

    PubMed  CAS  Google Scholar 

  14. Papavassiliou AG. Chemical nucleases as probes for studying DNA-protein interactions. Biochem J. 1995;305:345–357.

    PubMed  CAS  Google Scholar 

  15. Stern MK, Bashkin JK, Sall ED. Hydrolysis of RNA by transition-metal complexes. J Am Chem Soc. 1990;112:5357–5359.

    CAS  Google Scholar 

  16. Wall M, Hynes RC, Chin J. Doppelte Lewis-Säure-Aktivierung bei der Spaltung von Phosphorsäurediestern. Angew Chem. 1993;105:1696–1697.

    CAS  Google Scholar 

  17. Göbel MW. Zweikernige Metallkomplexe als effiziente Vermittler biochemisch relevanter Hydrolysereaktionen. Angew Chem. 1994;104:1201–1203.

    Google Scholar 

  18. Bashkin JK. RNA hydrolysis by Cu(II) complexes: toward synthetic ribinucleases and ribozymes. In: Karlin KD, Tyeklár Z, eds. Bioinorganic Chemistry of Copper. New York: Chapman and Hall; 1993:132–139.

    Google Scholar 

  19. Ettinger MJ. Copper metabolism and diseases of copper metabolism. In: Lontie R, ed. Copper Proteins and Copper Enzymes, Vol. III. Boca Raton: CRC Press; 1984:175–229.

    Google Scholar 

  20. Barrow L, Tanner MS. Copper distribution among serum proteins in paediatric liver disorders and malignancies. Eur J Clin Invest. 1988;18:555–560.

    PubMed  CAS  Google Scholar 

  21. Wirth PL, Linder MC. Distribution of copper among components of human serum. J Natl Cancer Inst. 1985;75:277–284.

    PubMed  CAS  Google Scholar 

  22. Linss M, Weser U. Redox behaviour and stability of active centre analogues of Cu2Zn2-superoxide dismutase. Inorg Chim Acta. 1987;138:163–166.

    CAS  Google Scholar 

  23. Vänngard T. Copper proteins. In: Swartz HM, Bolton JR, Borg DC, eds. Biological Applications of Electron Spin Resonance. New York: Wiley; 1972;411–447.

    Google Scholar 

  24. Anemüller S. EPR-Spektroskopie in der Biochemie. Biospektrum. 1995;1:37–38.

    Google Scholar 

  25. Müller J, Felix K, Maichle C, Lengfelder E, Strähle J, Weser U. Phenyl-substituted copper di-Schiff base, a potent Cu2Zn2 superoxide dismutase mimic surviving biochelation. Inorg Chim Acta. 1995;233:11–19.

    Google Scholar 

  26. Steinkühler C, Pedersen JZ, Weser U, Rotilio G. Oxidative stress induced by a di-Schiff base copper complex is both mediated and modulated by glutathione. Biochem Pharmacol. 1991;42:1821–1827.

    PubMed  Google Scholar 

  27. Richter A, Weser U. Kinetics of the H2O2 dependent cleavage of Cu-thiolate centres in yeast Cu8-thionein. Inorg Chim Acta. 1988;151:145–148.

    CAS  Google Scholar 

  28. Li Y, Zhang L, Bayer E, Oelkrug D, Weser U. Comparative luminescence of rat liver Cuthionein and its chemically synthesized α-domain. Z Naturforsch. 1990;45c: 1193–1196.

    Google Scholar 

  29. Byrnes RW, Mohan M, Antholine WE, Xu RX, Petering DH. Oxidative stress induced by a copper-thiosemicarbazone complex. Biochemistry. 1990;29:7046–7053.

    PubMed  CAS  Google Scholar 

  30. Steinkühler C, Mavelli I, Rossi L et al. Cytotoxicity of a low molecular weight Cu2Zn2 superoxide dismutase active center analog in human erythroleukemia cells. Biochem Pharmacol. 1990;39:1473–1479.

    PubMed  Google Scholar 

  31. Shinar E, Rachmilewitz EA, Shifter A, Rahamim E, Saltman P. Oxidative damage to human red cells induced by copper and iron complexes in the presence of ascorbate. Biochim Biophys Acta. 1989;1014:66–72.

    PubMed  CAS  Google Scholar 

  32. Milne L, Nicotera P, Orrenius S, Burkitt MJ. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Arch Biochem Biophys. 1993;304:102–109.

    PubMed  CAS  Google Scholar 

  33. Simpson JA, Cheeseman KH, Smith SE, Dean RT. Free-radical generation by copper ions and hydrogen peroxide, stimulation by Hepes buffer. Biochem J. 1988;254:519–523.

    PubMed  CAS  Google Scholar 

  34. Werringloer J, Kawano S, Chacos N, Estabrook RW. The interaction of divalent copper and the microsomal electron transport system. J Biol Chem. 1979;254:11839–11846.

    PubMed  CAS  Google Scholar 

  35. Que BG, Downey KM, So AG. Degradation of deoxyribonucleic acid by a 1,10-phenanthro-line-copper complex: the role of hydroxyl radicals. Biochemistry. 1980;19:5987–5991.

    PubMed  CAS  Google Scholar 

  36. Reich KA, Marshall LE, Graham DR, Sigman DS. Cleavage of DNA by the 1,10-phenanthroline-copper ion complex. Superoxide mediates the reaction dependent on NADH and hydrogen peroxide. J Am Chem Soc. 1981;103:3582–3584.

    CAS  Google Scholar 

  37. Marx G, Chevion M. Site-specific modification of albumin by free radicals, reaction with copper(II) and ascorbate. Biochem J. 1985;236:397–400.

    Google Scholar 

  38. Reed CJ, Douglas KT. Single-strand cleavage of DNA by Cu(II) and thiols: a powerful chemical DNA-cleaving system. Biochem Biophys Res Commun. 1989;162:1111–1117.

    PubMed  CAS  Google Scholar 

  39. Fernandes A, Mira ML, Azevedo MS, Manso C. Mechanisms of hemolysis induced by copper. Free Radic Res Commun. 1988;4:291–298.

    PubMed  CAS  Google Scholar 

  40. Cadenas E, Brigelius R, Akerboom T, Sies H. Oxygen radicals and hydroperoxides in mammalian organs: aspects of redox cycling and hydrogen peroxide metabolism. In: Sund H, Ullrich V, eds. 34. Kolloquium Moosbach; Biological Oxidations. Berlin: Springer; 1983:288–310.

    Google Scholar 

  41. Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988;263:17205–17208.

    PubMed  CAS  Google Scholar 

  42. Bellomo G, Vairetti M, Stivala L, Mirabelli F, Richelmi P, Orrenius S. Demonstration of nuclear compartmentalization of glutathione in hepatocytes. Proc Natl Acad Sci USA. 1992;89:4412–4416.

    PubMed  CAS  Google Scholar 

  43. Klotz LO, Müller J, Fausel M, Gebhardt R, Weser U. Reactivity of lipophilic diSchiff-base coordinated copper in rat hepatocytes. Biochem Pharmacol. 1996;51:919–929.

    PubMed  CAS  Google Scholar 

  44. Schubert R. Comparison of octano/buffer and liposome/buffer partition coefficients as models for the in vivo behaviour of drugs. Proc MoBBEL. 1994;8:11–20.

    CAS  Google Scholar 

  45. Kliifers P, Schuhmacher J. Lineare Koordinationspolymere mit Kupfer(II) und vierfach deprotonierten Zuckeralkoholen. Angew Chem. 1994;106:1839–1841.

    Google Scholar 

  46. Jezowska-Bojczuk M, Kozlowsky H, Pettit LD, Micera G, Decock P. Coordination ability of digalactosamine, and di-and trigalacturonic acids. Potentiometrie and spectroscopic studies of Cu(II) complexes. J Inorg Biochem. 1995;57:1–10.

    PubMed  CAS  Google Scholar 

  47. Grant D, Long WF, Moffat CF, Williamson FB. Cu2+-heparin interaction studied by polarimetry. Biochem J. 1992;283:243–246.

    PubMed  CAS  Google Scholar 

  48. Richter C, Pripfl T, Winterhalter KH. Tyrosine-copper(II) inhibits lipid peroxidation in rat liver microsomes. FEBS Lett. 1980;111:95–98.

    PubMed  CAS  Google Scholar 

  49. Brigelius R, Spöttl R, Bors W, Lengfelder E, Saran M, Weser U. Superoxide dismutase activity of low molecular weight Cu2+-chelates studied by pulse radiolysis. FEBS Lett. 1974;47:72–75.

    PubMed  CAS  Google Scholar 

  50. Brigelius R, Hartmann HJ, Bors W, Saran M, Lengfelder E, Weser U. Superoxide dismutase activity of Cu(tyr)2 and Cu, Co-erythrocuprein. Hoppe-Seyler’s Z Physiol Chem. 1975;356:739–745.

    PubMed  CAS  Google Scholar 

  51. Weinstein J, Bielsky BHJ. Reaction of superoxide radicals with copper(II)-histidine complexes. J Am Chem Soc. 1980;102:4916–4919.

    CAS  Google Scholar 

  52. Brumas V, AUiey N, Berthon G. A new investigation of copper(II)-serine, copper(II)-histidine-serine, copper(II)-asparagine, and copper(II)-histidine-asparagine equilibria under physiological conditions, and implications for stimulation models relative to blood plasma. J Inorg Biochem. 1993;52:287–296.

    PubMed  CAS  Google Scholar 

  53. Ueda J, Ozawa T, Miyazaki M, Fujiwara Y. Activation of hydrogen peroxide by copper(II) complexes with some histidine-containing peptides and their SOD-like activities. J Inorg Biochem. 1994;55:123–130.

    PubMed  CAS  Google Scholar 

  54. Pickart L, Freedman JH, Loker WJ et al. Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells. Nature. 1980;288:715–717.

    PubMed  CAS  Google Scholar 

  55. Lau SJ, Sarkar B. The interaction of copper(II) and glycyl-L-histidyl-L-lysine, a growth-modulating tripeptide from plasma. Biochem J. 1981;199:649–656.

    PubMed  CAS  Google Scholar 

  56. Kubota S, Yang JT. Bis[cyclo(histidylhistidine)]copper(II) complex that mimicks the active center of superoxide dismutase has its catalytic activity. Proc Natl Acad Sci USA. 1984;81:3283–3286.

    PubMed  CAS  Google Scholar 

  57. Costanzo LL, De Guidi G, Giuffrida S, Rizzarelli E, Vecchio G. Determination of superoxide dismutase-like activity of copper(II) complexes. Relevance of the speciation for the correct interpretation of in vitro O2 scavenger activity. J Inorg Biochem. 1993;50:273–281.

    PubMed  CAS  Google Scholar 

  58. Kroneck PMH, Vortisch V, Hemmerich P. Model studies on the coordination of copper in biological systems. Eur J Biochem. 1980;109:603–612.

    PubMed  CAS  Google Scholar 

  59. Bal W, Kozlowsky H, Kupryszewski G, Mackiewicz Z, Pettit L, Robbins R. Complexes of Cu(II) with asn-ser-phe-arg-tyr-NH2; an example of metal ion-promoted conformational organization which results in exceptionally high complex stability. J Inorg Biochem. 1993;52:79–87.

    PubMed  CAS  Google Scholar 

  60. Kimoto E, Tanaka H, Gyotuku J, Morishige F, Pauling L. Enhancement of antitumor activity of ascorbate against Ehrlich ascites tumor cells by the coppe:glycylglycylhistidine complex. Cancer Res. 1983;43:824–828.

    PubMed  CAS  Google Scholar 

  61. Hay RW, Hassan MM, You-Quan C. Kinetic and thermodynamic studies of the copper(II) and nickel(II) complexes of glycylglycyl-L-histidine. J Inorg Biochem. 1993;52:17–25.

    PubMed  CAS  Google Scholar 

  62. Iyer KS, Lau SJ, Laurie SH, Sarkar B. Synthesis of the native copper(II)-transport site of human serum albumin and its copper(II)-binding properties. Biochem J. 1978;169:61–69.

    PubMed  CAS  Google Scholar 

  63. Somasundaram I, Palaniandavar M. Factors influencing the stability of ATP in ternary complexes: spectroscopic investigation of the interaction of certain biomimetic copper(II) complexes with ATP and AMP. J Inorg Biochem. 1994;53:95–108.

    CAS  Google Scholar 

  64. Casassas E, Gargallo R, Giménez I, Izquierdo-Ridorsa A, Tauler R. Study of the acid-base behavior and copper(II) complexing properties of uracil-and hypoxanthine-derived nucleotides in aqueous solution. J Inorg Biochem. 1994;56:187–199.

    CAS  Google Scholar 

  65. Champagne ET, Fisher MS. Binding differences of Zn(II) and Cu(II) ions with phytate. J Inorg Biochem. 1990;38:217–223.

    CAS  Google Scholar 

  66. Kitajima N, Fujisawa K, Fujimoto C et al. A new mode for dioxygen binding in hemocyanin. Synthesis, characterization, and molecular structure of the μ-η22 peroxo dinuclear copper(II) complexes, [Cu(HB(3,5-R2pz)3]2(O2) (R = i-Pr and Ph). J Am Chem Soc. 1992;114:1277–1291.

    CAS  Google Scholar 

  67. Tyeklár Z, Karlin KD. Copper-dioxygen chemistry: a bioinorganic challenge. Acc Chem Res. 1989;22:241–248.

    Google Scholar 

  68. Tyeklár Z, Karlin KD. Functional models for hemocyanin and copper monooxygenases. In: Karlin KD, Tyeklár Z, eds. Bioinorganic Chemistry of Copper. New York: Chapman & Hall; 1993:277–291.

    Google Scholar 

  69. Flanagan S, González JA, Bradshaw JE et al. Studies of CNI copper coordination compounds: what determines the electron-transfer rate of the blue-copper proteins? In: Karlin KD, Tyeklár Z, eds. Bioinorganic Chemistry of Copper. New York: Chapman & Hall; 1993:91–97.

    Google Scholar 

  70. Bharadwaj PK, Potenza JA, Schugar HJ. Characterization of [dimethyl N,N′-ethylenebis(L-cysteinato)(2-)-S.S′]copper(II), Cu(SCH2CH(CO2CH3)NHCH2-)2, a stable Cu(II)-aliphatic dithiolate. J Am Chem Soc. 1986;108:1351–1352.

    CAS  Google Scholar 

  71. Feringa BL. Oxidation catalysis; a dinuclear approach. In: Karlin KD, Tyeklár Z, eds. Bioinorganic Chemistry of Copper. New York: Chapman & Hall; 1993:306–324.

    Google Scholar 

  72. Gelling OJ, Feringa BL. Oxidative demethylation in monooxygenase model systems. Competing pathways for binuclear and helical multinuclear copper(I) complexes. J Am Chem Soc. 1990;112:7599–7604.

    CAS  Google Scholar 

  73. Reddy KV, Jin SJ, Arora PK et al. Copper-mediated oxidative C-terminal N-dealkylation of peptide-derived ligands. A possible model for enzymatic generation of desglycine peptide amides. J Am Chem Soc. 1990;112:2332–2340.

    CAS  Google Scholar 

  74. Winge DR, Dameron CT, George GN, Pickering IJ, Dance IG. Cuprous-thiolate polymetallic clusters in biology. In: Karlin KD, Tyeklár Z, eds. Bioinorganic Chemistry of Copper. New York: Chapman & Hall; 1993:110–123.

    Google Scholar 

  75. Ruggiero CE, Carrier SM, Tolman WB. Durch Cu-Komplexe vermittelte reduktive Disproportionierung von NO: Nachahmung der Bildung von N2O durch Kupferproteine und Heterogenkatalysatoren. Angew Chem. 1994;106:917–919.

    CAS  Google Scholar 

  76. Averill BA. Nitrosylkupfer-Komplexe: Beiträge zum Verständnis der dissimilatorischen, kupferhaltigen Nitrit-Reduktasen. Angew Chem. 1994;106:2145–2146.

    CAS  Google Scholar 

  77. Greenaway FT, Brown LM, Dabrowiak JC, Thompson MR, Day VM. Copper(II) complexes of the antiulcer drug Cimetidine. J Am Chem S oc. 1980;102:7782–7784.

    CAS  Google Scholar 

  78. Kimura E, Koike T, Shimizu Y, Kodama M. Complexes of the histamine H2-antagonist Cimetidine with divalent and monovalent copper ions. Inorg Chem. 1986;25:2242–2246.

    CAS  Google Scholar 

  79. Kozlowski H, Kowalik-Jankowska T, Anouar A et al. Famotidine, the new antiulcerogenic agent, a potent ligand for metal ions. J Inorg Biochem. 1992;48:233–240.

    PubMed  CAS  Google Scholar 

  80. Freijanes E, Berthon G. Biological significance of Cimetidine sulfoxide complexes with copper(II) and zinc(II) ions during Cimetidine treatment. Inorg Chim Acta. 1986;124:141–147.

    CAS  Google Scholar 

  81. Underhill AE, Bougourd SA, Flügge ML, Gale SE, Gomm PS. Metal complexes of antiinflammatory drugs. Part VIII: suprofen complex of copper(II). J Inorg Biochem. 1993;52:139–144.

    PubMed  CAS  Google Scholar 

  82. Oga S, Taniguchi SF, Najjar R, Souza AR. Synthesis, characterization, and biological screening of a copper flurbiprofen complex with anti-inflammatory effects. J Inorg Biochem. 1991;41:45–51.

    PubMed  CAS  Google Scholar 

  83. Blasco F, Ortiz R, Perelló L, Borrás J, Amigó J, Debaerdemaeker T. Synthesis and spectroscopy studies of copper(II) nitrate of sulfacetamide drug. Crystal structure of [Cu(sulfacetamide)2(NO)3)2]. Antibacterial studies. J Inorg Biochem. 1994;53:117–126.

    PubMed  CAS  Google Scholar 

  84. West DX, Padhye SB, Sonawane PB. Structural and physical correlations in the biological properties of transition metal heterocyclic thiosemicarbazone and S-alkyldithiocarbazate complexes. Structure Bonding. 1991;76:1–50.

    CAS  Google Scholar 

  85. Alzuet G, Ferrer S, Borrás J, Sorenson JRJ. Anticonvulsant properties of copper acetazolamide complexes. J Inorg Biochem. 1994;55:147–151.

    PubMed  CAS  Google Scholar 

  86. Sorenson JRJ. Copper complexes offer a physiological approach to treatment of chronic diseases. Prog Med Chem. 1989;26:437–568.

    PubMed  CAS  Google Scholar 

  87. Rosen GM, Pou S, Ramos CL, Cohen MS, Britigan BE. Free radicals and phagocytic cells. FASEB J. 1995;9:200–209.

    PubMed  CAS  Google Scholar 

  88. Brumas V, Brumas B, Berthon G. Copper(II) interactions with nonsteroidal antiinflammatory agents. I. Salicylic acid and acetylsalicylic acid. J Inorg Biochem. 1995;57:191–207.

    PubMed  CAS  Google Scholar 

  89. Weser U, Sellinger KH, Lengfelder E, Werner W, Strähle J. Structure of Cu2(indomethacin)4 and the reaction with superoxide in aprotic systems. Biochim Biophys Acta. 1980;631:232–245.

    PubMed  CAS  Google Scholar 

  90. Roberts NA, Robinson PA. Copper chelates of slow acting antirheumatic drugs and nonsteroidal anti-inflammatory drugs: their SOD-like activity and stability. In: Rotilio G, ed. Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine. Amsterdam: Elsevier; 1986:538–540.

    Google Scholar 

  91. Brune K. Analgetika — Antiphlogistika — Antirheumatika. In: Estler CJ, ed. Pharmakologie und Toxikologie. 4th edn. Stuttgart: Schattauer; 1995:238–271.

    Google Scholar 

  92. Wallace JL, Cirino G. The development of gastrointestinal-sparing nonsteroidal antiinflammatory drugs. Trends Pharmacol Sci. 1994;15:405–406.

    PubMed  CAS  Google Scholar 

  93. Vane J. Towards a better aspirin. Nature. 1994;367:215–216.

    PubMed  CAS  Google Scholar 

  94. Meade EA, Smith WL, DeWitt DL. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993;268:6610–6614.

    PubMed  CAS  Google Scholar 

  95. Walker JE. Lysine residue 199 of human serum albumin is modified by acetylsalicylic acid. FEBS Lett. 1976;66:173–175.

    PubMed  CAS  Google Scholar 

  96. Deters D, Weser U. The analogous reaction of diSchiff base coordinated copper and Cu2Zn2 superoxide dismutase with nitric oxide. BioMetals. 1995;8:25–29.

    CAS  Google Scholar 

  97. Flohé L. Superoxide dismutase for therapeutic use: clinical experience, dead ends and hopes. Mol Cell Biochem. 1988;84:123–131.

    PubMed  Google Scholar 

  98. Vaille A, Jadot G, Elizagaray A. Anti-inflammatory activity of various superoxide dismutases on polyarthritis in the Lewis rat. Biochem Pharmacol. 1990;39:247–255.

    PubMed  CAS  Google Scholar 

  99. Deby C, Goutier R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases. Biochem Pharmacol. 1990;39:399–405.

    PubMed  CAS  Google Scholar 

  100. Lengfelder E, Sellinger KH, Weser U. Reactivity of Cu(indomethacin)2 and Cu-penicillamine with O2. In: Weser U, ed. Metalloproteins. Stuttgart: Thieme; 1979:136–141.

    Google Scholar 

  101. Linss M, Weser U. The di-Schiff-base of pyridine-2-aldehyde and 1,4-diaminobutane, a flexible Cu(I)/Cu(II) chelator of significant superoxide dismutase mimetic activity. Inorg Chim Acta. 1986;125:117–121.

    CAS  Google Scholar 

  102. Weser U, Miesel R, Linss M. Reactivity of active centre analogues of Cu2Zn2 superoxide dismutase. In: Emerit I, Packer L, Auclair C, eds. Advances in Experimental Medicine and Biology Volume 264: Antioxidants in Therapy and Preventive Medicine. New York: Plenum Press; 1990:51–57.

    Google Scholar 

  103. Tainer JA, Getzoff ED, Richardson JS, Richardson DC. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983;306:284–287.

    PubMed  CAS  Google Scholar 

  104. Valentine JS. Dioxygen reactions. In: Bertini I, Gray HB, Lippard SJ, Valentine JS, eds. Bioinorganic Chemistry. Mill Valley: University Science Books; 1994:253–313.

    Google Scholar 

  105. Banci L, Bertini I, Bruni B et al. X-ray, NMR and molecular dynamics studies on reduced bovine superoxide dismutase: implications for the mechanism. Biochem Biophys Res Commun. 1994;202:1088–1095.

    PubMed  CAS  Google Scholar 

  106. Willingham WM, Sorenson JRJ. Copper(II)ethylenediaminetetraacetate does disproportionate superoxide. Biochim Biophys Res Commun. 1988;150:252–258.

    CAS  Google Scholar 

  107. Lipton SA, Chai YB, Pan ZH et al. A redox based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature. 1993;364:626–632.

    PubMed  CAS  Google Scholar 

  108. Murphy ME, Sies H. Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci USA. 1991;81:10860–10864.

    Google Scholar 

  109. Miesel R, Weser U. Anticarcinogenic reactivity of copper-diSchiff bases with Superoxide dismutase-like activity. Free Rad Res Commun. 1990;11:39–51.

    CAS  Google Scholar 

  110. Miesel R, Haas R. Reactivity of an active center analog of Cu2Zn2-superoxide dismutase in murine model of acute and chronic inflammation. Inflammation. 1993;17:595–611.

    PubMed  CAS  Google Scholar 

  111. Miesel R, Kröger H, Kurpisz M, Weser U. Induction of arthritis in mice and rats by potassium peroxochromate and assessment of disease activity by whole blood chemiluminescence and 99mpertechnetate-imaging. Free Rad Res. 1995;23:213–227.

    CAS  Google Scholar 

  112. Miesel R, Dietrich A, Brandi B, Ulbrich N, Kurpisz M, Kroger H. Suppression of arthritis by an active center analogue of Cu2Zn2-superoxide dismutase. Rheumatol Int. 1994;14:119–126.

    PubMed  CAS  Google Scholar 

  113. Steinkühler C, Mavelli I, Melino G, Rossi L, Weser U, Rotilio G. Copper complexes with Superoxide dismutase activity enhance oxygen-mediated toxicity in human erythroleukemia cells. Ann NY Acad Sci. 1988;551:133–136.

    PubMed  Google Scholar 

  114. Nagele A. Unimpaired metabolism of pyridine dinucleotides and adenylates in Chinese hamster ovary cells during oxidative stress elicited by cytotoxic doses of copper-putrescine-pyridine. Biochem Pharmacol. 1995;49:147–155.

    PubMed  CAS  Google Scholar 

  115. Nagele A. Influence of the SOD-mimetic complex Cu-PuPy on cellular redox systems, adenylates, and cell survival. Biochem Soc Trans. 1995;23:255S.

    PubMed  CAS  Google Scholar 

  116. Miesel R, Hartmann HJ, Li Y, Weser U. Reactivity of active center analogs of Cu2Zn2 superoxide dismutase on activated polymorphonuclear leukocytes. Inflammation. 1990;14:409–419.

    PubMed  CAS  Google Scholar 

  117. Steinkühler C, Mavelli I, Melino G et al. Antioxygenic enzyme activities in differentiating human neuroblastoma cells. Ann NY Acad Sci. 1988;551:137–140.

    PubMed  Google Scholar 

  118. Freedman JH, Ciriolo MR, Peisach J. The role of glutathione in copper metabolism and toxicity. J Biol Chem. 1989;264:5598–5605.

    PubMed  CAS  Google Scholar 

  119. Hanna PM, Mason RP. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique. Arch Biochem Biophys. 1992;295:205–213.

    PubMed  CAS  Google Scholar 

  120. Morpurgo L, Rotilio G, Hartmann HJ, Weser U. Copper(I) transfer into apo-stellacyanin using copper(I)-thiourea as a copper-thionein model. Biochem J. 1984;221:923–925.

    PubMed  CAS  Google Scholar 

  121. Brouwer M, Brouwer-Hoexum T. Glutathione-mediated transfer of copper(I) into American lobster apohemocyanin. Biochemistry. 1992;31:4096–4102.

    PubMed  CAS  Google Scholar 

  122. Ascone I, Longo A, Dexpert H, Ciriolo MR, Rotilio G, Desideri A. An X-ray absorption study on the reconstitution process of bovine Cu,Zn superoxide dismutase by Cu(I)-glutathione complex. FEBS Lett. 1993;322:165–167.

    PubMed  CAS  Google Scholar 

  123. Da Costa Ferreira AM, Ciriolo MR, Marcocci L, Rotilio G. Copper(I) transfer into metallothionein mediated by glutathione. Biochem J. 1993;292:673–676.

    Google Scholar 

  124. Rafter GW. Copper inhibition of glutathione reductase and its reversal with gold thiolates, thiol, and disulfide compounds. Biochem Med. 1982;27:381–391.

    PubMed  CAS  Google Scholar 

  125. Schulz GE, Schirmer RH, Sachsenheimer W, Pai EF. Structure of the flavoenzyme glutathione reductase. Nature. 1978;273:120–124.

    PubMed  CAS  Google Scholar 

  126. Mizuguchi H, Imamura I, Takemura M, Fukui H. Purification and characterisation of diamine oxidase (histaminase) from rat small intestine. J Biochem. 1994;116:631–635.

    PubMed  CAS  Google Scholar 

  127. Alton G, Taher TH, Beever RJ, Palcic MM. Stereochemistry of benzylamine oxidation by copper amine oxidases. Arch Biochem Biophys. 1995;316:353–361.

    PubMed  CAS  Google Scholar 

  128. Falk MC, Staton AJ, Williams TJ. Heterogeneity of pig plasma amine oxidase: molecular and catalytic properties of chromatographically isolated forms. Biochemistry. 1983;22:3746–3751.

    PubMed  CAS  Google Scholar 

  129. Gacheru SN, Trackman PC, Shah MA et al. Structural and catalytic properties of copper in lysyl oxidase. J Biol Chem. 1990;265:19022–19027.

    PubMed  CAS  Google Scholar 

  130. Steffens GCM, Soulimane T, Wolff G, Buse G. Stoichiometry and redox behaviour of metals in cytochrome-c oxidase. Eur J Biochem. 1993;213:1149–1157.

    PubMed  CAS  Google Scholar 

  131. Einarsdóttir O. Fast reactions of cytochrome oxidase. Biochim Biophys Acta. 1995;1229:127–129.

    Google Scholar 

  132. Tsukihara T, Aoyama H, Yamashita E et al. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995;269:1069–1074.

    PubMed  CAS  Google Scholar 

  133. Iwata S, Ostermeier C, Ludwig B, Michel H. Structure of 2.8 A resolution of cytochrome c oxidase from paracoccus denitrificans. Nature. 1995;376:660–669.

    PubMed  CAS  Google Scholar 

  134. Reedy BJ, Blackburn NJ. Preparation and characterization of half-apo dopamine-β-hydroxylase by selective removal of CuA. Identification of a sulfur ligand at the dioxygen binding site by EXAFS and FTIR spectroscopy. J Am Chem Soc. 1994;116:1924–1931.

    CAS  Google Scholar 

  135. Klinman JP, Berry JA, Tian G. New probes of oxygen binding and activation: application to dopamine β-monooxygenase. In: Karlin KD, Tyeklár Z, eds. Bioinorganic Chemistry of Copper. New York: Chapman & Hall; 1993:151–163.

    Google Scholar 

  136. Blackburn NJ. Chemical and spectroscopic studies on dopamine-β-hydroxylase and other copper monooxygenases. In: Karlin KD, Tyeklár Z, eds. Bioinorganic Chemistry of Copper. New York: Chapman & Hall; 1993:164–183.

    Google Scholar 

  137. Stewart LC, Klinman JP. Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and function. Ann Rev Biochem. 1988;57:551–592.

    PubMed  CAS  Google Scholar 

  138. von Zastrow M, Tritton TR, Castle JD. Exocrine secretion granules contain peptide amidation activity. Proc Natl Acad Sci USA. 1986;83:3297–3301.

    Google Scholar 

  139. Murthy ASN, Mains RE, Eipper BA. Purification and characterization of peptidyl α-amidating monoxygenase from bovine neurointermediate pituitary. J Biol Chern. 1986;261:1815–1822.

    CAS  Google Scholar 

  140. Merkler DJ, Kulathila R, Young SD, Freeman J, Villafranca JJ. The enzymology of peptide amidation. In: Karlin KD, Tyeklár Z, eds. Bioinorganic Chemistry of Copper. New York: Chapman & Hall; 1993:196–209.

    Google Scholar 

  141. Merkler DJ, Kulathila R, Ash DE. The inactivation of bifunctional peptidylglycine a-amidating enzyme by benzylhydrazine: evidence that the two enzyme-bound copper atoms are nonequivalent. Arch Biochem Biophys. 1995;317:93–102.

    PubMed  CAS  Google Scholar 

  142. Nishioka K. Particulate tyrosinase of human malignant melanoma. Eur J Biochem. 1978;85:137–146.

    PubMed  CAS  Google Scholar 

  143. Jiménez M, Maloy WL, Hearing VJ. Specific identification of an authentic clone for mammalian tyrosinase. J Biol Chem. 1989;264:3397–3403.

    PubMed  Google Scholar 

  144. Réglier M, Amadéi E, Alilou EH, Eydoux F, Pierrot M, Waegell B. Oxidation of unactivated hydrocarbons: models for tyrosinase and dopamine β-hydroxylase. In: Karlin KD, Tyeklár Z, eds. Bioinorganic Chemistry of Copper. New York: Chapman & Hall; 1993:348–362.

    Google Scholar 

  145. Paschen W, Weser U. Singlet oxygen decontaminating activity of erythrocuprein (superoxide dismutase). Biochim Biophys Acta. 1973;327:217–222.

    PubMed  CAS  Google Scholar 

  146. Weser U, Paschen W, Younes M. Singlet oxygen and superoxide dismutase (cuprein). Biochem Biophys Res Commun. 1975;66:769–777.

    PubMed  CAS  Google Scholar 

  147. Khan AU, Kasha M. Singlet molecular oxygen in the Haber-Weiss reaction. Proc Natl Acad Sci USA. 1994;91:12365–12367.

    PubMed  CAS  Google Scholar 

  148. Steinkühler C, Carri MT, Micheli G, Knoepfel L, Weser U, Rotilio G. Copper-dependent metabolism of Cu,Zn-superoxide dismutase in human K562 cells. Biochem J. 1994;302:687–694.

    PubMed  Google Scholar 

  149. Tibell L, Aasa R, Marklund SL. Spectral and physical properties of human extracellular superoxide dismutase: a comparison with CuZn superoxide dismutase. Arch Biochem Biophys. 1993;304:429–433.

    PubMed  CAS  Google Scholar 

  150. Messerschmidt A, Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin; modelling and structural relationships. Eur J Biochem. 1990;187:341–352.

    PubMed  CAS  Google Scholar 

  151. Fox PL, Mukhopadhyay C, Ehrenwald E. Structure, oxidant activity, and cardiovascular mechanisms of human ceruloplasmin. Life Sci. 1995;56:1749–1758.

    PubMed  CAS  Google Scholar 

  152. Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Rad Biol Med. 1993;14:325–337.

    PubMed  CAS  Google Scholar 

  153. Felix K, Lengfelder E, Hartmann HJ, Weser U. A pulse radiolytic study on the reaction of hydroxyl and superoxide radicals with yeast Cu(I)-thionein. Biochim Biophys Acta. 1993;1203:104–108.

    PubMed  CAS  Google Scholar 

  154. Deters D, Hartmann HJ, Weser U. Transient thiyl radicals in yeast copper(I) thionein. Biochim Biophys Acta. 1994;1208:344–347.

    PubMed  Google Scholar 

  155. Sharoyan SG, Shalijian AA, Nalbandyan RM, Buniatian HC. Two copper-containing proteins from white and gray matter of brain. Biochim Biophys Acta. 1977;493:478–487.

    PubMed  CAS  Google Scholar 

  156. Mikaelyan MV, Markossian KA, Paitian NA, Sharoyan SG, Nalbandyan RM. Secretory granules from different glands contain neurocuprein-like protein. Biochem Biophys Res Commun. 1988;155:1430–1436.

    PubMed  CAS  Google Scholar 

  157. Mann KG, Lawler CM, Vehar GA, Church WR. Coagulation factor V contains copper ion. J Biol Chem. 1984;259:12949–12951.

    PubMed  CAS  Google Scholar 

  158. Solomon EI, Baldwin MJ, Lowery MD. Electronic structures of active sites in copper proteins: contributions to reactivity. Chem Rev. 1992;92:521–542.

    CAS  Google Scholar 

  159. Abolmaali B, Taylor H, Weser U. Evolutionary aspects of copper binding centers in copper proteins. Struc Bond. 1997;91:91–190.

    Google Scholar 

  160. Duracková Z, Felix K, Feniková L, Kepstová I, Labuda J, Weser U. Superoxide dismutase mimetic activity of a cyclic tetrameric Schiff base N-coordinated Cu(II) complex. BioMetals. 1995;8:183–187.

    Google Scholar 

  161. Weser U, Richter C, Wendel A, Younes M. Reactivity of antiinflammatory and superoxide dismutase active Cu(II)-salicylates. Bioinorg Chem. 1978;8:201–213.

    PubMed  CAS  Google Scholar 

  162. Duracková Z, Labuda J. Superoxide dismutase mimetic activity of macrocyclic Cu(II)-tetraanhydroaminobenzaldehyde (TAAB) complex. J Inorg Biochem. 1995;58:297–303.

    PubMed  Google Scholar 

  163. Pierre JL, Chautemps P, Refaif S et al. Imidazolate-bridged dicopper(II) and copper-zinc complexes of a macrobicyclic ligand (cryptand). A possible model for the chemistry of Cu-Zn superoxide dismutase. J Am Chem Soc. 1995;117:1965–1973.

    CAS  Google Scholar 

  164. Felix K, Lengfelder E, Deters D, Weser U. Pulse radiolytically determined superoxide dismutase mimicking activity of copper-putrescine-pyridine, a diSchiff base coordinated copper complex. BioMetals. 1993;6:11–15.

    CAS  Google Scholar 

  165. Younes M, Lengfelder E, Zienau S, Weser U. Pulse radiolytically generated superoxide and Cu(II)-salicylates. Biochem Biophys Res Commun. 1978;81:576–580.

    PubMed  CAS  Google Scholar 

  166. Lengfelder E, Fuchs C, Younes M, Weser U. Functional aspects of the Superoxide dismutative action of Cu-penicillamine. Biochim Biophys Acta. 1979;567:492–502.

    PubMed  CAS  Google Scholar 

  167. Sadler PJ, Tucker A, Viles JH. Involvement of a lysine residue in the N-terminal Ni2+ and Cu2+ binding site of serum albumins. Eur J Biochem. 1994;220:193–200.

    PubMed  CAS  Google Scholar 

  168. Predki PF, Harford C, Brar P, Sarkar B. Further characterization of the N-terminal copper(II)-and nickel(II)-binding motif of proteins. Biochem J. 1992;287:211–215.

    PubMed  CAS  Google Scholar 

  169. Deuschle U, Weser U. Reactivity of Cu2(lonazolac)4, a lipophilic copper acetate derivative. Inorg Chim Acta. 1984;91:237–242.

    CAS  Google Scholar 

  170. Müller J. PhD thesis. Tübingen, Germany; 1997.

    Google Scholar 

  171. Saran M, Michel C, Bors W. Reaction of NO with O2. Implications for the action of endothelial derived relaxation factor (EDRF). Free Rad Res Commun. 1990;10:221–226.

    CAS  Google Scholar 

  172. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990;87:1620–1624.

    PubMed  CAS  Google Scholar 

  173. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. J Biol Chem. 1991;266:4244–4250.

    PubMed  CAS  Google Scholar 

  174. Denicola A, Rubbo H, Rodriguez D, Radi R. Peroxynitrite-mediated cytotoxicity to Trypanosoma cruzi. Arch Biochem Biophys. 1993;304:279–286.

    PubMed  CAS  Google Scholar 

  175. Moro MA, Darley-Usmar VM, Goodwin DA et al. Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci USA. 1994;91:6702–6706.

    PubMed  CAS  Google Scholar 

  176. Di Mascio P, Bechara EJH, Medeiros MHG, Briviba K, Sies H. Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Lett. 1994;355:287–289.

    PubMed  Google Scholar 

  177. Tagliavacca L, Moon N, Dunham WR, Kaufman RJ. Identification and functional requirement of Cu(I) and its ligands within coagulation factor VIII. J Biol Chem. 1997;272:27428–27434.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klotz, LO., Weser, U. (1998). Biological chemistry of copper compounds. In: Rainsford, K.D., Milanino, R., Sorenson, J.R.J., Velo, G.P. (eds) Copper and Zinc in Inflammatory and Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3963-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3963-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5757-8

  • Online ISBN: 978-94-011-3963-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics