Skip to main content

Effects of mechanical ventilation on kidney function

  • Chapter
Critical Care Nephrology

Abstract

Mechanical ventilation affects the regulation of body fluids by influencing renal function. Increases in intrathoracic pressure commonly decreases urine volume and sodium excretion. This is associated with a positive water and sodium balance which is an undesired side effect of mechanical ventilation. In this chapter, the pathophysiology of mechanical ventilation and its effects on intrathoracic pressure are shown. New strategies of ventilatory support are briefly presented and finally the consequences of ventilatory therapy for renal function are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marini JJ, Ravenscraft SA. Mean airway pressure: physiologic determinants and clinical importance — Part 1: Physiololic determinants and measurements. Crit Care Med 1992; 20: 1461–72.

    Article  PubMed  CAS  Google Scholar 

  2. Marini JJ, Ravenscraft SA. Mean airway pressure: physiologic determinants and clinical importance — Part 2: Clinical implications. Crit Care Med 1992; 20: 160–416.

    Article  Google Scholar 

  3. Pepe PE, Marini JJ. Occult positive end-epiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis 1982; 126: 166–70.

    PubMed  CAS  Google Scholar 

  4. Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med 1995; 21: 522–36.

    Article  PubMed  CAS  Google Scholar 

  5. Hemmer M, Viquerat CE, Suter PM, Valloton MB. Urinary antidiuretic hormone excretion during mechanical ventilation and weaning in man. Anaesthesiology 1980; 52: 395–400.

    Article  CAS  Google Scholar 

  6. Jarnberg PO, de Villota ED, Eklund J, Granberg PO. Effects of positive end-expiratory pressure on renal function. Acta Anaesthesiol Scand 1978; 22: 508–14.

    Article  PubMed  CAS  Google Scholar 

  7. Priebe HJ, Heimann JC, Hedley-White J. Mechanisms of renal dysfunction during positive end-expiratory pressure ventilation. J Appl Physiol 1981; 50: 643–9.

    PubMed  CAS  Google Scholar 

  8. Berry AJ, Geer RT, Marshall C, Wu WH, Zbuzek VM, Marshall BE. The effect of long-term controlled mechanical ventilation with positive end-expiratory pressure on renal function in dogs. Anesthesiology 1984; 61: 406–15.

    Article  PubMed  CAS  Google Scholar 

  9. Venus B, Mathru M, Smith RA, Pham CG, Shirakawa Y, Sugiura A. Renal function during application of positive end-expiratory pressure in swine: effects of hydration. Anesthesiology 1985; 62: 765–9.

    Article  PubMed  CAS  Google Scholar 

  10. Steinhoff H, Falke K, Schwarzhoff W. Enhanced renal function associated with intermittent mandatory ventilation in acute respiratory failure. Intensive Care Med 1982; 8: 69–74.

    Article  PubMed  CAS  Google Scholar 

  11. Steinhoff H, Kohlhoff RJ, Falke KJ. Facilitation of excretory function and hemodynamics of the kidneys by intermittent mandatory ventilation. Intensive Care Med 1984; 10: 59–64.

    Article  PubMed  CAS  Google Scholar 

  12. Quist JH, Pontoppidan RS, Wilson E, et al. Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology 1975; 42: 45–55.

    Article  Google Scholar 

  13. Rossaint R, Krebs M, Förther J et al. Inferior vena caval pressure increase contributes to sodium and water retention during PEEP in awake dogs. J Appl Physiol 1993; 75: 2484–92.

    PubMed  CAS  Google Scholar 

  14. Anderson RI, Rose CE, Bems AS, Erickson AL, Arnold PE. Mechanism of effect of hypercapnic acidosis on renin secretion in the dog. Am J Physiol 1980; 238: FI 19–25.

    Google Scholar 

  15. Raff H, Roarty TP. Renin, ACTH and aldosterone during acute hypercapnia and hypoxia in conscious rats. Am J Physiol 1988; 254: R431–5.

    PubMed  CAS  Google Scholar 

  16. Chen HG, Wood CE. The adrenocorticotropic hormone and arginine vasopressin responses to hypercapnia in fetal and maternal sheep. Am J Physiol 1993; 264: R324–30.

    PubMed  CAS  Google Scholar 

  17. Colice GL. Fluid balance in acute and chronic lung disease. Am Rev Respir Dis 1988; 138: 1052–3.

    PubMed  CAS  Google Scholar 

  18. Gotshall R, Miles DS, Sexson WR. The combined effects of hypoxemia and mechanical ventilation on renal function. Aviat Space Environ Med 1986; 57: 782–6.

    PubMed  CAS  Google Scholar 

  19. Gattinoni L, Pelosi P, Vitale G, Pesenti A, D’Andrea L, Mascheroroni D. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology 1991; 74: 1523.

    Article  Google Scholar 

  20. Parker JC, Hemandez LA, Peevy KJ. Mechanisms of ventilator-induced lung injury. Crit Care Med 1993; 21: 131–43.

    Article  PubMed  CAS  Google Scholar 

  21. Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 1985; 132: 880–4.

    PubMed  CAS  Google Scholar 

  22. Parker IC, Hemandez LA, Longnecker GL, Peevy K, Johnson W. Lung edema caused by high peak inspiratory pressures in dogs. Role of increased microvascular filtration pressure and permeability. Am Rev Respir Dis 1990; 142: 321–8.

    PubMed  CAS  Google Scholar 

  23. Corbridge TC, Wood LDH, Crawford GP, Chudoba MJ, Yanos J, Sznajder JI. Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 1990; 142: 311–5.

    PubMed  CAS  Google Scholar 

  24. Dreyfuss D, Saumon G. Barotrauma is volutrauma, but which volume is the one responsible’? Intensive Care Med 1992; 18: 139–41.

    Article  PubMed  CAS  Google Scholar 

  25. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988; 137: 1159–64.

    PubMed  CAS  Google Scholar 

  26. Fu Z, Costello ML, Tsukimoto K, Prediletto R, Elliott AR, Mathieu-Costello 0, West JB. High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 1992; 73: 123–33.

    PubMed  CAS  Google Scholar 

  27. Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970; 28: 596–608.

    PubMed  CAS  Google Scholar 

  28. Muscedere JG, Mullen JBM, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994; 149: 1327–34.

    PubMed  CAS  Google Scholar 

  29. Haake R, Schlichtig R, Ulstad DR, Henschen RR. Barotrauma: Pathophysiology, risk factors, and prevention. Chest 1987; 91: 608–13.

    Article  PubMed  CAS  Google Scholar 

  30. Marcy TW. Barotrauma: detection. recognition and management. Chest 1993; 104: 578–84.

    Article  PubMed  CAS  Google Scholar 

  31. Rouby JJ, Lherm T, Martin de Lassale E, Poete P, Bodin L, Finet JF, Callard P, Viars P. Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 1993; 19: 383–9.

    Article  PubMed  CAS  Google Scholar 

  32. Gattinoni L, Bombino M, Pelosi P, Lissoni A, Pesenti A Fumagalli R, Tagliabue M. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 1994; 271: 1772–9.

    Article  PubMed  CAS  Google Scholar 

  33. Dantzker DR, Brook CJ, Dehart P, Lynch JP, Weg JG. Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 1979; 120: 1039–52.

    PubMed  CAS  Google Scholar 

  34. Pesenti A. Target blood gases during ARDS ventilatory management. Intensive Care Med 1990; 16: 349–51.

    Article  PubMed  CAS  Google Scholar 

  35. Darioli R, Perret C. Mechanical controlled hypoventilation in status asthmaticus. Amer Rev Respir Dis 1984; 129: 385–7.

    CAS  Google Scholar 

  36. Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 1990; 16: 37–27.

    Google Scholar 

  37. Hickling KG. Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiraton distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: A prospective study. Crit Care Med 1994; 22: 1568–78.

    Article  CAS  Google Scholar 

  38. Slutsky AS. Consensus conference on mechanical ventilation–Part 1. Intensive Care Med 1994; 20: 64–79.

    Article  PubMed  CAS  Google Scholar 

  39. Slutsky AS. Consensus conference on mechanical ventilation–Part 2. Intensive Care Med 1994; 20: 150–62.

    Article  PubMed  CAS  Google Scholar 

  40. Feihl F, Perret C. Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 1994; 150: 1722–37.

    PubMed  CAS  Google Scholar 

  41. Bersentes TJ, Simmons DH. Effects of acute acidosis on renal hemodynamics. Am J Physiol 1967; 12: 633–40.

    Google Scholar 

  42. Anderson RI, Henrich WL, Gross PA, Dillingham MA. Role of renal nerves, angiotensin II, and prostaglandines in the antinatriuretic response to acute hypercapnic acidosis in the dog. Circ Res 1982; 50: 294–300.

    Article  PubMed  CAS  Google Scholar 

  43. Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis 1982; 126: 166–70.

    PubMed  CAS  Google Scholar 

  44. Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEP). Intensive Care Med 1995; 21: 522–36.

    Article  PubMed  CAS  Google Scholar 

  45. Brown DG, Pierson DJ. Auto-PEEP is common in mechanically ventilated patients: a study of incidence, severity, and detection. Resp Care 1986; 31: 1069–74.

    Google Scholar 

  46. Wright PE, Bernard GR. The role of airflow resistance in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 1989; 139: 1169–74.

    PubMed  CAS  Google Scholar 

  47. Reynolds E. Effect of alterations in mechanical ventilator settings on pulmonary gas exchange in hyaline membrane disease. Arch Dis Child 1971; 46 152–9.

    Article  PubMed  CAS  Google Scholar 

  48. Baum M, Benzer H, Mutz N. Pauser G, Toncar L. Inversed Ratio Ventilation (IRV). Die Rolle des Atemzeitverhältnisses in der Beatmung beim ARDS. Anaesthesist 1980; 29: 592–6.

    PubMed  CAS  Google Scholar 

  49. Abraham E, Yoshihara G. Cardiorespiratory effects of pressure controlled inverse ratio ventilation in severe respiratory failure. Chest 1989; 96: 1356–9.

    Article  PubMed  CAS  Google Scholar 

  50. Cole AGH, Weller SF, Sykes MK. Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med 1984; 10: 227–32.

    Article  PubMed  CAS  Google Scholar 

  51. Gurevitch MJ, Van Dyke J, Young ES, Jackson K. Improved oxygenation and lower peak airway pressure in severe adult respiratory distress syndrome. Treatment with inverse ratio ventilation. Chest 1986; 89: 211–3.

    Article  PubMed  CAS  Google Scholar 

  52. Lachmann B, Danzmann E, Haendly B, Jonson B. Ventilator settings and gas exchange in respiratory distress syndrome. In: Prakash O (ed). Applied physiology in clinical respiratory care. The Hague: Nijhoff 1982; 141–76.

    Google Scholar 

  53. Tharratt RS, Allen RP, Albertson TE. Pressure controlled inverse ratio ventilation in severe adult respiratory failure. Chest 1988; 94: 755–62.

    Article  PubMed  CAS  Google Scholar 

  54. Munoz J, Guerrero JE, Escalante JL, Palomino R, Albert P. Pressure controlled ventilation versus conventional controlled mechanical ventilation with decellerating inspiratory flow. Intensive Care Med 1992; 18 (Suppl 2): S86.

    Google Scholar 

  55. Mercat A, Graini L, Teboul JL, Lenique F, Richard C. Cardiorespiratory effects of pressure-controlled ventilation with and without inverse ratio in adult respiratory distress syndrome. Chest 1993; 104: 871–5.

    Article  PubMed  CAS  Google Scholar 

  56. Valta P, Takala J. Volume-controlled inverse ratio ventilation: effect on dynamic hyperinflation and auto-PEEP. Acta Anaesthesiol Scand 1993; 37: 323–8.

    Article  PubMed  CAS  Google Scholar 

  57. Lessard LR, Guérot E, Lorino H, Lemaire F, Brochard L. Effects of pressure-controlled with different I:E ratios versus volume-controlled ventilation on respiratory mechanics, gas exchange, and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology 1994; 80: 983–91.

    Article  PubMed  CAS  Google Scholar 

  58. Hedenstiema G, Tokics L, Lundquist H, Andersson T, Strandber; A. Brismar B. Phrenic nerve stimulation during halothane anesthesia. Anesthesiology 1994; 80: 751–60.

    Article  Google Scholar 

  59. Jousela I, Mäkeläinen A, Tahvanainen J, Nikki P. Diaphragmatic movement using ultrasound during spontaneous and mechanical ventilation: effect of tidal volume. Acta Anaesth Belg 1992; 43: 165–71.

    PubMed  CAS  Google Scholar 

  60. Burchardi H. Rathgeber J, Sydow M. The concept of analgo-sedation depends on the concept of mechanical ventilation. In: Vincent JL (ed). 1995 Yearbook of Intensive Care and Emerency Medicine. Berlin, Heidelberg, New York: Springer, 1995; 155–64.

    Chapter  Google Scholar 

  61. Gooch JL, Suchyta MR, Balbierz JM, Petahan JH, Clemmer TP. Prolonged paralysis after treatment with neuromuscular junction blocking agents. Crit Care Med 1991; 19: 1125–30.

    Article  PubMed  CAS  Google Scholar 

  62. Witt NJ, Zochodne DW, Bolton CF Grand’Maison F, Wells G, Young B, Sibbald WJ. Peripheral nerve function in sepsis and multiple organ failure. Chest 1991; 99: 176–84.

    Article  PubMed  CAS  Google Scholar 

  63. Maclntyre NR. Respiratory function during pressure support therapy. Chest 1986; 89: 677–83.

    Article  Google Scholar 

  64. Brochard L, Pluskwa F, Lemaire F. Improved efficacy of spontaneous breathing with inspiratory pressure support. Amer Rev Respir Dis 1987; 136: 411–5.

    Article  CAS  Google Scholar 

  65. Tokioka H. Saito S, Kosaka F Effect of pressure support ventilation on breathing patterns and respiratory work. Intensive Care Med 1989; 15: 491–4.

    Article  PubMed  CAS  Google Scholar 

  66. Santak B. Rademacher P, Sandmann W, Falke K J. Influence of SIMV plus inspiratory pressure support on Va/Q distributions during postoperative weaning. Intensive Care Med 1991; 17: 136–40.

    Article  PubMed  CAS  Google Scholar 

  67. Stock MC, Downs JB, Frohlicher DA. Airway pressure release ventilation. Crit Care Med 1987; 15: 462–6.

    Article  PubMed  CAS  Google Scholar 

  68. Räsänen J, Cane RD, Downs JB, Hurst JM, Jousela IT, Kirby RR, Rogove HJ, Stock MC. Airway pressure release ventilation during acute lung injury. A prospective multicenter trial. Crit Care Med 1990; 19: 1234–41.

    Article  Google Scholar 

  69. Baum M, Benzer H, Putensen C, Koller V, Putz G. Biphasic positive airway pressure (BiPAP)–eine neue Form der augmentierenden Beatmung. Anaesthesist 1989; 38: 452–8.

    PubMed  CAS  Google Scholar 

  70. Hörmann C, Baum M, Putensen C, Mutz N, Benzer H. Biphasic positive airway pressure (BIPAP)–a new mode of ventilatory support. Eur J Anaesthesiol 1994; 11: 37–42.

    PubMed  Google Scholar 

  71. Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA. Airway pressure release ventilation versus volume controlled inverse ratio ventilation in patients with acute lung injury. Am J Respir Int Care Med 1993; 149: 1550–6.

    Google Scholar 

  72. Putensen C, Räsänen J, López FA. Ventilation-perfusion distributions during mechanical ventilation with superimposed spontaneous breathing in canine lung injury. Am J Respir Crit Care Med 1994; 150: 101–8.

    PubMed  CAS  Google Scholar 

  73. Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis 1992; 145: 114–20.

    Article  PubMed  CAS  Google Scholar 

  74. Younes M, Puddy A, Roberts D, Light RB, Quesada A, Taylor K, Oppenheimer L. Cramp H. Proportional assist ventilation. Results of an initial clinical trial. Am Rev Respir Dis 1992; 145: 121–9.

    Article  PubMed  CAS  Google Scholar 

  75. Di Bona GF. The function of the renal nerves. Rev Physiol Biochem Pharmacol 1982; 94: 7–181.

    Google Scholar 

  76. Rossaint R, Jörres D, Nienhaus M, Oduah K, Falke K, Kaczmarczyk G. Positive end-expiratory pressure reduces renal excretion without hormonal activation after volume expansion in dogs. Anesthesioloy 1992; 77: 700–8.

    Article  CAS  Google Scholar 

  77. Kaczmarczyk G, Jörres D, Rossaint et al. Extracellular volume expansion inhibits antidiuretic hormone increase during positive end-expiratory pressure in conscious dogs. Clin Sci 1993; 85: 643–9.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burchardi, H. (1998). Effects of mechanical ventilation on kidney function. In: Critical Care Nephrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5482-6_89

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5482-6_89

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6306-7

  • Online ISBN: 978-94-011-5482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics