Skip to main content

Ecology of Yersinia pestis and the Epidemiology of Plague

  • Chapter
  • First Online:
Yersinia pestis: Retrospective and Perspective

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 918))

Abstract

This chapter summarizes information about the natural foci of plague in the world. We describe the location, main hosts, and vectors of Yersinia pestis. The ecological features of the hosts and vectors of plague are listed, including predators – birds and mammals and their role in the epizootic. The epizootic process in plague and the factors affecting the dynamics of epizootic activity of natural foci of Y. pestis are described in detail. The mathematical models of the epizootic process in plague and predictive models are briefly described. The most comprehensive list of the hosts and vectors of Y. pestis in the world is presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karimova T.Yu., Neronov V.M. The nature plague foci of Palaearctic. Moscow. Nauka. 2007. P. 199.

    Google Scholar 

  2. Dubyanskiy MA, Kenzhebayev A, Stepanov VM, Asenov GA, Dubyanskaya LD. Prediction of plague epizootic activity in the Pre-Aral and Kyzylkum. Nukus of Karakalpakstan. 1992. p. 240.

    Google Scholar 

  3. Rivkus YZ, Naumov AV, Khotko NI, Geldyev A. Epidemiology and prevention of plague. Ashgabat. “Magaryf”; 1992. p. 239.

    Google Scholar 

  4. Bertherat E. Plague around the world 2010–2015.Weekly epidemiological record. WHO.# 8. 2016;91:89–104.

    Google Scholar 

  5. Ageyev VS, Burdelov LA, Serzhan OS. Slowdown mechanisms of circulation of the plague pathogen associated with fleas - poikilothermic hosts of this infection. Quarantine and Zoonotic Diseases in Kazakhstan. Almaty, 2003;2(8):131–40.

    Google Scholar 

  6. Akiyev AK. Question status of the mechanism of preservation of plague in inter epizootic years. (Overview). Problems of Particularly Dangerous Infections. Saratov. 1970;4(14):13–33.

    Google Scholar 

  7. Dubyanskiy MA. About the external signs of plague epizootic in the settlements of great gerbil in various phases of its development. Mater. scientific conf. on natural focality and plague prevention. Alma-Ata; 1963b. p. 76–8.

    Google Scholar 

  8. Dubyanskiy MA, Kanatov YV, Kurganov VA, Asenov G, Kenzhebayev AY, Dernovaya VF, Alibayev IA, Dubyanskaya LD, Bogatyrev SK, Tusnolobova TP. Regurgitates of birds of prey as a factor of plague microbe distribution. Ecological problems of Kazakhstan. Alma-Ata. 1990. p. 11–3.

    Google Scholar 

  9. Levi MI. Hypotheses explaining the epizootic process in plague. // Medical Parasitology and parasitic diseases. 1985. № 1. p. 36–42.

    Google Scholar 

  10. Naumov NP, Lobachyov VS, Dmitriev PP, Smirin VM. Natural foci of plague in the Pre-Aral Karakum. M. Ed. MoscowStateUniversity.1972. p. 402.

    Google Scholar 

  11. Stogov II, Afanasyev AG, Baranowskii SK. About the distance of transport of great gerbil fleas by Isabelline wheatear. In: Proceedings of the IV Scientific. Conf. of natural foci and plague prevention. Alma-Ata; 1965. p. 248–250.

    Google Scholar 

  12. Shevchenko VL. About the mechanisms of territorial spread of plague.// XII Inter-republican scientific. Practical. conf. anti-plague institutions of Central Asia and Kazakhstan on prevention of plague. Alma-Ata. 1985. p. 154–6.

    Google Scholar 

  13. Yermilov AP, Soldatkin IS, Rothschild EV. The problem of preservation of plague microbe in nature and prospects for further research. State and perspectives of plague prophylaxis: Abstracts at the All-Union conf. anti-plague institute “Microbe”. Saratov, 1978. p. 9–12.

    Google Scholar 

  14. Soldatkin IS, Rudenchik Yu V. Epizootic process in natural foci of plague (audit of concept).Ecology of sapronoses pathogens. M. 1988. p. 117–31.

    Google Scholar 

  15. Dyatlov AI, Antonenko AD, Grizhebovskii GM, Labunets NF. Natural focality of plague in the Caucasus. Stavropol; 2001. p. 345.

    Google Scholar 

  16. Popov NV. Discrete - the main feature of space-time manifestation of plague outbreaks in gopher type foci. Saratov: Publishing house of Saratov University; 2002. p. 192.

    Google Scholar 

  17. Sludskyi AA, Derlyatko KI, Golovko EI, Ageyev VS. Gissar natural foci of plague. Saratov: Publishing house of Saratov University; 2003. p. 248.

    Google Scholar 

  18. Sagymbek UA, Aykimbaev AM, Meka-Mechenko TV, Rapoport LP. Selected questions of epizootiology of plague in the example of Moyinkum autonomous foci, Almaty. 2003; p. 204.

    Google Scholar 

  19. Sludskyi AA. Epizootology of plague (review of studies and hypotheses). Deposited in Russian Institute for Scientific and Technical Information of Russian Academy of Sciences, 08.11.2014, № 231, 2014), Saratov; 2014a. p. 313.

    Google Scholar 

  20. Sludskyi AA. The list of the world vertebrate fauna – the hosts of the plague pathogen. Problems of Particularly Dangerous Infections, vol 3. 2014b. p. 42–51.

    Google Scholar 

  21. Emelyanov PF. Rodents – edificators biocenosis as the main hosts of plague. Especially dangerous infections in Caucasus: Thes.report. Stavropol, 1987.p. 300–2.

    Google Scholar 

  22. Petrov VS. USSR natural foci of plague (typing, structure, genesis): abstract. thesis ........doc.biol.science. - Almaty, 1968, p. 40.

    Google Scholar 

  23. Dubyanskiy VM. Computer modeling of the epizootic situation with the use of remote sensing in the epidemiological surveillance of plague (on the example of Central Asian natural focus).abstract. thesis ....doctor. Biol Sciences. Moscow, 2015. p. 47.

    Google Scholar 

  24. Dyatlov AI. Evolutionary aspects in natural focality of plague. Stavropol: Bk. Publishing House; 1989. p. 197.

    Google Scholar 

  25. Eygelis Yu K. Rodents of Eastern Transcaucasia and the problem of rehabilitation of local plague foci. Saratov: Publishing House of Saratov University; 1980. p. 262.

    Google Scholar 

  26. Burdelov LA, Burdelov AS, Bondar EP, ZubovVV, Maslennikova ZP, Rudenchik NF. Use of burrows by great gerbil (Rhombomys opimus, Rodentia, Cricetidae) and epizootic significance its uninhabited colonies in the Central Asian foci of plague. Zool J. 1984. LXIII. V. 12. p. 1848–58.

    Google Scholar 

  27. Hrustselevsky VP. Biocenotic factors of natural focality of plague in Central Asia and the Trans-Baikal. Doctoral thesis abstract, Saratov; 1974. p. 52.

    Google Scholar 

  28. Tarasov PP. About the significance of predatory birds in the Khangay plague foci // Mat. Ir-sk. Anti-plague Inst. 1949. V.VII. p. 126–9.

    Google Scholar 

  29. Demidova EK. About the role of terrestrial and avian predators in the spread of plague // Proc. rep. conf. Irkutsk. Anti-plague in-te. Ulan-Ude; 1958;3. p. 41–2.

    Google Scholar 

  30. Kozlov MP, Sultanov GV. Plague. In: Natural focality, epizootology.V.3. Makhachkala; 2000. p. 303.

    Google Scholar 

  31. Kunitskii VN. Ecological and geographical sketch of fleas of south-west Azerbaijan in relation to their value in the natural foci of plague. Abstract thesis PhD. Almaty; 1966. p. 23.

    Google Scholar 

  32. Burdelov LA. Hostal and functional structure of the Central Asian desert plague focus (on the example of the Pre-Aral area): Abstract. thesis.… doctor. biol. science – Saratov, 1991 (All-Union. Anti-plague. Research Institute “Microbe”). p. 42.

    Google Scholar 

  33. Vashchenok VS. Fleas – vectors of human and animal diseases – L.: Nauka, 1988. – p. 163.

    Google Scholar 

  34. Konnov NP. Ultra structural and functional analysis of Y. pestis and its relationship with the organism of fleas: abstract.thesis doc. of biol.science. Saratov; 1990; p. 59.

    Google Scholar 

  35. Kutyrev VV, Kononov NP, Volkov YP. The causative agent of plague: ultrastructure and localization in the vector. M. Medicine; 2007. p. 224.

    Google Scholar 

  36. Korenberg EI. The natural focality of infections: current problems and perspectives of the research. J Zool. 2010;89(1):5–17.

    Google Scholar 

  37. Kunitskii VN, Gauzshtein DM, Gauzshtein LD, Kudinova TP, Kunitsa NK, Pavlova AE, Rasin BV, Filimonov VI, Shpes EM. About the structure and some quantitative indexes of plague epizootic in the great gerbil populations in southern Pre-Balkhash. Message 1.Activity of epizootic in Bosugen area in 1963–64.// Mater. V scientific conf. anti-plague institutions in Central Asia and Kazakhstan, devoted to 50th anniversary of the Great October Socialist Revolution. Alma-Ata; 1967. p. 30–2.

    Google Scholar 

  38. Sviridov GG. To modeling of some elements of plague epizootic in the Ili-Karatal interfluve.PhD M.S. Spec.14780 (epidemiology). Alma-Ata; 1969. p. 142.

    Google Scholar 

  39. Soldatkin IS. Enzootic of the plague as a self-regulating process. Author.diss. dr. of biol. sciences. 780. Saratov; 1968. p. 51.

    Google Scholar 

  40. Vashchenok VS. The role of fleas (Siphonaptera) in epizootology of plague. Parasitology. 1999;33(3):198–209.

    CAS  Google Scholar 

  41. Suleimenov BM. Transmission of plague by “unblocked” fleas. – Abstract. doctor. med.sciences: 14.00.30. Almaty. 1995. p. 48.

    Google Scholar 

  42. Dubrovsky YA. Gerbils and natural focality of cutaneous leishmaniasis. Moscow: Nauka; 1978. p. 183.

    Google Scholar 

  43. Rothschild EV. The spatial structure of the natural plague focus and methods of its study.// M. Ed. Moscow State University.1978. p.192.

    Google Scholar 

  44. Chumakova IV, Kozlov MP. Causative agent of plague as an element of epizootic process. Stavropol. 2008. p. 247.

    Google Scholar 

  45. Kunitskii VN, Gauzshtein DM, Dubovitskii NM, Rasin BV, Shpes EM, Novikov GS, Larionov GM, Bogatyreva LM, Savelov Yu V. About the spatial structure of the plague focal areas in the lower reaches of Ili. Materials of VIII scientific.conf. anti-plague institutions in Central Asia and Kazakhstan. Alma-Ata; 1974. p. 175–7.

    Google Scholar 

  46. Rivkus YZ, Mitropolskii OV, Urmanov RA, Belyaeva SI. Development features of plague epizooties among Kyzylkum rodents. Fauna and ecology of rodents. 1985;16:5–106.

    Google Scholar 

  47. Kucheruk VV. Kulik IL, Dubrovsky YA. Great gerbil as a vital form of the desert. In the book: Fauna and ecology of rodents. M. MSU. 1972; p. 5–70.

    Google Scholar 

  48. Gauzshtein DM, Kunitskii VN, Kunitskaya NT, Filimonov VI. About time of stay of the great gerbil fleas on the host’s body in natural conditions. In: Proceedings of the IV scientific conference of natural foci and plague prevention. Alma-Ata; 1965. p. 66–8.

    Google Scholar 

  49. Kanatov YV, Lobachyov VS. Misaleva OS. Efficiency of bacteriological and serological diagnosis of plague in great gerbils in the North Pre-Aral region. In: Serological methods of diagnosis in epizootic survey of natural foci of plague. Saratov; 1975. p. 133–7.

    Google Scholar 

  50. Rudenchik YV, Soldatkin IS. Seasonal changes in the mobility of the great gerbils and spread of the plague epizooties in the Northern Kyzylkum. Problems of Particularly Dangerous Infections. 1969;1:34–9.

    Google Scholar 

  51. Naiden PE. Some aspects of the spatial development of plague epizooties.// In the book.Especially dangerous infections in the Caucasus. Mater.II scientific.conf. on epidemiology, epizootiology, prevention of especially dangerous infections of anti-plague institutions of Caucasus. Stavropol. 1970;1:174–6.

    Google Scholar 

  52. Naiden PE, Dyatlov AI, Melnikov IF, Breer VD. To the question of the spatial development of plague epizootic in Kyzylkum. Problems of Particularly Dangerous Infections. 1969;1:26–33.

    Google Scholar 

  53. Rothschild EV. Some spatial features of natural focality of plague in the northern Aral region. Problems of Particularly Dangerous Infections № 6. Saratov; 1969. p. 13–21.

    Google Scholar 

  54. Burdelov LA, Warsawskiy BS. To the question about the relationship between micro-focal and migration forms of existence of plague microbe in northern Pre-Aral – Proc: epidemiology and epizootology of plague. Saratov. 1980. p. 14–8.

    Google Scholar 

  55. Rall YM. Natural focality and plague epizootology. M: Medicine. 1965. p. 363.

    Google Scholar 

  56. Burdelov AS. About cyclical changes in the number of great gerbils and epizootic in their populations. In the book. In: Proceedings of the Central Asian Research Anti-Plague Institute. Alma-Ata. 1959. № 5.p. 179–87.

    Google Scholar 

  57. Lavrovskii AA. About epizootic cycling in natural foci of plague and the reasons causing it. Problems of Particularly Dangerous Infections.№ 1. Saratov; 1969. p. 3–10.

    Google Scholar 

  58. Dubyanskiy MA, Epizootic plague prediction on the example of the Central Asian desert focus. Diss. Dr. B. S. 14.00.30, Alma-Ata; 1983. p.352.

    Google Scholar 

  59. Dubyanskaya LD. Ecological factors that determine the seasonal changes in the number of the great gerbil (for example of six geographic populations).Author.PhD.B.S.: 03.00.16. Almaty; 1987. p. 21.

    Google Scholar 

  60. Dubyanskiy VM. Experience of system analysis of the dynamics of spring number of great gerbils in Central Kyzylkum.Author. PhD B.S. 03.00.08. Almaty; 2007. p. 26.

    Google Scholar 

  61. Dubyanskiy MA. Zoning of Central Asian natural plague foci based on epizootic activity communications of its parts with periodicity of atmospheric circulation types. Book: Problems of natural foci of plague. Abstracts IV to the Soviet-Mongolian experts anti-plague conference. institutions. Irkutsk; 1980. №1. p. 56–7.

    Google Scholar 

  62. Dubyanskiy MA, Bogatyrev SK. To the questions about the mechanism of the impact of solar activity on intensity of plague epizooties. In: Proceedings X conference antiplague institutions of Central Asia and Kazakhstan. Alma-Ata; 1979, № 1. p. 185–7.

    Google Scholar 

  63. Serzhanov OS, Aubakirov SA, Ageyev VS. About possible role of the hydrogeological conditions of the existence of plague enzootic during interepizootic period in the Central Asian desert focus // condition and prospects. proph. plague. Saratov; 1978. p. 17–20.

    Google Scholar 

  64. Petrov VS, Shmuter MF. Features of plague epizooties in natural foci of different types // Tr. Central Asian scientific anti-plague institutions. 1958; 4. p. 3–21.

    Google Scholar 

  65. Soldatkin IS, Rudenchik YV. Some questions of plague enzootic as a form of existence of self-regulating system “rodent – flea – pathogen”. Fauna and ecology of rodents. V. 10. Moscow State University. 1971. p. 5–29.

    Google Scholar 

  66. Dubyanskiy MA. Ecological structure of settlements of the great gerbil in Pre-Aral Karakum PhD B. S. 097. Alma-Ata; 1970. p.23.

    Google Scholar 

  67. Marin SN, Kamnev PI, Trofimov AS. Some of the mechanisms of plague epizootic self-regulation among great gerbils. In the book: epidemiology and epizootiology of plague. Saratov; 1980. p. 8–14.

    Google Scholar 

  68. Dubyanskiy MA, Bogatyrev SK, Yermilov AP, Dubyanskya LD, Bogatyrev LM. About the correlation between the regime of winds and epizootic activity in some parts of the Central Asian desert plague focus. Book: Mater. VIII scientific conf. anti-plague. Institutions of Central Asia and Kazakhstan. Alma-Ata; 1974. p. 168–9.

    Google Scholar 

  69. Keeling MJ, Gilligan CA. Bubonic plague: a metapopulation model of a zoonosis. Proc R Soc London Ser B-Biol Sci. 2000;267(1458):2219–30.

    Article  CAS  Google Scholar 

  70. Holt AC, Salkeld DJ, Fritz CL, Tucker JR, Gong P. Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change. // International Journal of Health Geographics 2009;8:38. doi:10.1186/1476-072X-8-38. The electronic version of this article is the complete one and can be found online at: http://www.ij-healthgeographics.com/content/8/1/38

    Google Scholar 

  71. Stenseth NC, Samia NI, Viljugrein H, Kausrud KL, Begon M, Davis S, Leirs H, Dubyanskiy VM, Esper J, Ageyev VS, Klassovskiy, Nikolay L, Pole SB, Chan KS. Plague dynamics are driven by climate variation. Proc Natl Acad Sci U S A. 2006; 103(35):13110–15. Published online 2006 August 21. doi:10.1073/pnas.0602447103.

    Google Scholar 

  72. Snall T, O’Hara RB, Ray C, Collinge SK. Climate-driven spatial dynamics of plague among prairie dog colonies. Am Nat. 2008;171:238–48.

    Article  CAS  PubMed  Google Scholar 

  73. Kausrud KL, Viljugrein H, Frigessi A, Begon M, Davis S, Leirs H, Dubyanskiy V, Stenseth NC. Climatically-driven synchrony of gerbil populations allows large-scale plague outbreaks. In: Proceedings of the Royal Society of London, Series B. 2007;274 p. 1963–9.

    Google Scholar 

  74. Kol NA, Kalush Yu A, Rostovtsev MG, Chuldum AF, Mamash EA. The use of geographic information technologies for the analysis of spatial dynamics of Karginsky meso-foci of Tuva natural focus of plague. Interexpo Geo-Siberia. 2008. №2. V. 3.

    Google Scholar 

  75. Davis S, Trapman P, Leirs H, Begon M, Heesterbeek JAP. The abundance threshold for plague as a critical percolation phenomenon. Nature. 2008;454:634–7.

    Article  CAS  PubMed  Google Scholar 

  76. Rudenchik YV. Study of epizootic process in plague in the imitation statistical model. Author.diss. of Dr. Biol Sci. 14.00.30. Saratov; 1979. p. 48.

    Google Scholar 

  77. Soldatkin IS, Rodnikovskii VB, Rudenchik YV. Experience of statistical modeling of epizootic process in plague. Zool J. 1973;52(5):751–6.

    Google Scholar 

  78. La Force FM, Acharya IL, Stott G, Brachman PS, Kaufman AF, Clapp RF, Shah NK. Clinical and epidemiological observations of plague outbreak in Nepal. Bulletin of the World Health Organisation. February 1971;45(6):693–706.

    Google Scholar 

  79. Soldatkin IS, Fenyuk BK, Possibilities and field of use of natural situations plague epizootic process modeling. Rodents and their ectoparasites. Saratov: Saratov.un-ty; 1968. p. 439–45.

    Google Scholar 

  80. Wilschut LI, Laudisoit A, Hughes NK, Addink EA, de Jong SM, Heesterbeek HAP, Reijniers J, Eagle S, Dubyanskiy VM, Begon M. Spatial distribution patterns of plague hosts: point pattern analysis of the burrows of great gerbils in Kazakhstan .J Biogeo. 2015; 42(7). doi:10.1111/jbi.12534.

    Google Scholar 

  81. Kuznetsov AA. Principles of quantifying of transmissible epizootic process by plague. Mater. scient. conf. dedicated to the 100th anniversary of the Anti-Plague Service of Russia. Saratov. 1997;1. p. 84.

    Google Scholar 

  82. Platonov ME, Evseeva VV, Efremenko DV, Afanas’ev MV, Verzhutski DB, Kuznetsova IV, M. Yu S, Dentovskaya SV, Kulichenko AN, Balakhonov SV, Anisimov AP. Intraspecies classification of rhamnose-positive Yersinia pestis strains from natural plague foci of Mongolia. Mol Genet Microbiol Virol. 2015;30(1):24–9.

    Article  Google Scholar 

  83. Warsawskiy S N, Kazakevitch V P, Lavrovskii A A, Nekipelov N V. The geography of natural foci of plague in Central Asia (West, Southwest and South-Eastern part of the MPR). Problems of Particularly Dangerous Infections. 1975;3/4(43/44). p. 5–14.

    Google Scholar 

  84. Klein JM, Poulet AR, Simonkovich E. Observations ecologiques dans une zone epizootique de pesteen Mauritanie. 1. Leslongeurseten particulier Gerbillus gerbillus Oliver, 1981 (Rodentia, Gerbillinae) //Cah. ORSTOM. Ser. Entomol. med. et parasitol. 1975a;13(1):13–28.

    Google Scholar 

  85. Baltazard M, Seydian B. Enquetesur les conditions de la peste on Moyen-Orient. Ibid.1960a;23(2/3):157–67.

    Google Scholar 

  86. Dubyanskiy MA, Dubyanskaya LD, Bogatyrev SK. The relationship between the amount of atmospheric condensation and the probability of human infection with the plague in the natural focus. ZHMEI. 1992b. № 9–10. p. 42–6.

    Google Scholar 

  87. Zarhidze VA, Zuychenko NA, Chelnokov VN, Obrikas RG. Some features of plague epizootic in Chilmamedkum in 1965–1966. Problems of Particularly Dangerous Infections. 1971;2:112–7.

    Google Scholar 

  88. Fadeyev GS, Serdobintseva TA. Mathematical prediction of seasonal changes in the number of great gerbil. Rodents, Mater. IV All-union meeting – L. Science, 1983. p. 464–5.

    Google Scholar 

  89. Soldatkin IS, Rudenchik Yu.V. About prediction of epizootic situations in the southern deserts. Report. Irkutsk Anti-Plague Institute: Kyzyl. 1966. p. 98–9.

    Google Scholar 

  90. Soldatkin IS, Rudenchik YV. The use of mathematical models in the study of natural foci of disease.Book: natural-focal anthropozoonoses. Omsk. 1976. p. 36–7.

    Google Scholar 

  91. Rothschild EV, Yermilov AP, Danilenko ID, Postnikov GB. Long-term dynamics of plague epizootic among the great gerbils in the North-East Caspian and link with the weather. Problems of especially dangerous infections, Saratov; 1970 № 6, p. 120–31.

    Google Scholar 

  92. Popov NV. Development of main principles for predicting of the plague epizooties in the settlements of small gopher in natural focus of the North-West Pre-Caspian.Author.PhD B.S. Saratov. 1977. p. 19.

    Google Scholar 

  93. Davis S, Begon M, De Bruyn L, et al. Predictive thresholds for plague in Kazakhstan. Science. 2004;304(5671):736–8.

    Article  CAS  PubMed  Google Scholar 

  94. Davis S, Leirs H, Viljugrein H, et al. Empirical assessment of a threshold model for sylvatic plague. J R Soc Interface. 2007;4:649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Genes VS. Some simple methods of cybernetic processing of data of diagnostic and physiological studies. M Sci. 1967. p. 207.

    Google Scholar 

  96. Kunitskii VN, Gauzshtein DM, Kunitskaya NT, Shpes EM. The informational content of value of the density of great gerbils populations and their fleas in relation in respect of identification of epizootic phase of the cycle. Book: Ecology and medical meaning of the gerbils of fauna of the USSR. M., 1977. p. 327–8.

    Google Scholar 

  97. Dubyanskiy MA, Dubyanskaya LD. Experience of use of multiple correlation method to predict the number of the great gerbil. Book L IV inter-agency meeting on phenological prediction. L. 1977; p. 169–71.

    Google Scholar 

  98. Okulova NM. Reproduction and mortality in the population of red-backed vole, and the main factors affecting these processes. Zool J. 1975;54(11):1703–14.

    Google Scholar 

  99. Sergeyev GE. The use of multiple correlation for the prediction of pests. In the book: Labor of the All-Union Scientific Research Institute of Plant Protection. L. 1970. p. 238–46.

    Google Scholar 

  100. Sokolova SP, Kuzmina EA, Abdullina VZ. Monitoring of especially dangerous infections (example of plague). Math Biol Bioinform. 2007;2(1):82–97.

    Article  Google Scholar 

  101. Tarakanov A, Sokolova S, Abramov B, DubyanskiyV. Comprehensive assessment of plague epizootic as a result of the recognition of the model. Scientific and technical, economic, industrial “Tauar.” 1999. p. 51–4.

    Google Scholar 

  102. Fu SC, Milne G. Epidemic modelling using cellular automata. In: Proceedings of the 1st Australian Conference on Artificial Life (ACAL.03), Canberra, December 2003. p. 43–57.

    Google Scholar 

  103. Grabowskii VI. 1995. Cellular automatons as simple models of complex systems. Successes of modern biology. 115(4), p. 412–418.

    Google Scholar 

  104. Gubler EV. Computational methods of analysis and detection of pathological processes. – L .: Medical, Leningrad Branch, 1978. p. 296.

    Google Scholar 

  105. Burdelov LA, Dubyanskiy VM, Meka-Mechenko VG, Semenko OV, Sadovskaya VP. About the reasons of recent expansion of the great gerbil area (Rhombomys opimus Licht) in Kazakhstan./ Zoological and hunting management studies in Kazakhstan and neighboring countries. Mat. international scient. conf. Almaty. 2012. p. 69–73.

    Google Scholar 

  106. Neronov VM, Malchazova SM, Tikonov VS. Regional geography of plague. M; 1991. p. 232

    Google Scholar 

  107. Rall Yu. M. Rodents and Natural focality . M. Medgiz. 1960. p. 224.

    Google Scholar 

  108. Warsawskiy SN, Kazakevitch VP, Lavrovskii AA. Natural focality of plague in the northern and western Africa. Problems of Particularly Dangerous Infections. 1971:3(19) p. 149–159.

    Google Scholar 

  109. Klein JM, Simonkovich E, Alonso JM, Baranton G. Observations ecologiquesdansune zone epizootique de pesteenMauritanie. 2. Les puces de rongeurs (Insecta, Siphonaptera). Ibid. 1975b; 13(1):29–39.

    Google Scholar 

  110. Borchert JN, Mach JJ, Linder TJ. Invasive rats and bubonic plague in northwest Uganda. Managing Vertebrate Invasive Species. In: Proceedings of an International Symposium.USDA/APHIS/WS, National Wildlife Research Center, Fort Collins, CO. 2007. p. 283–93.

    Google Scholar 

  111. Roberts JI. The relationship of field rodents to plague in Kenya. J Hyg. 1939;39(03):334–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ziva MH, Matee MI, Hang’ombe BM, Lyamuya EF, Kilonzo BS. Plague in Tanzania: an overview. Tanzan J Health Res. 2013;15(4):252–8. http://dx.doi.org/10.4314/thrb.v15i4.7

  113. Laudisoit A, Neerincx S, Makundi RH, Leiers H, Krasnov BR. Are local endemicity and ecological characteristics of vectors and reservoirs related? A case study in north-east Tanzania. Curr Zool. 2009;55(3):200–11.

    Google Scholar 

  114. Poland JD, Dennis DT. Plague manual/ Epidemiology, Distribution, Surveillance and Control. Treatment of Plague. 1999. WHO/CDS/EDC/99.2.p. 55–134.

    Google Scholar 

  115. LaForce FM, Acharya IL, Stott G, Brachman PS, Kaufman AF, Clapp RF, Shah NK .Clinical and epidemiological observations on an outbreak of plague in Nepal.// Bulletin of the World Health Organisation. February 1971; 45(6):693–706.

    Google Scholar 

  116. Barnes A. Vector-borne diseases control, Burma. Assignment report, 27 December 1981 – 5; March 1982.WHO. p. 30.

    Google Scholar 

  117. Anisimov AP, Lindler LE, Pier GB. Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev. 2004;17(2):434–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou D, Han Y, Song Y, Huang P, Yang R. Comparative and evolutionary genomics of Yersinia pestis. Microbes Infect. 2004;6:1226–34.

    Article  CAS  PubMed  Google Scholar 

  119. Natural foci of plague of the Caucasus, Pre-Caspian, Central Asia and Siberia.M. Medicine. 2004. p. 192.

    Google Scholar 

  120. Kazakov VP, Dyatlov AI. About the spatial structure and landscape confinement of outbreaks in the Dagestan mountainous plague foci. Prevention of natural focal infections. Stavropol. 1983; p. 76–8.

    Google Scholar 

  121. Kazakov VP, Nurmagomedov NM. Epizooty of plague among gray hamsters in mountainous Dagestan. Diseases with natural focality in the Caucasus. Stavropol. 1982; p. 66–7.

    Google Scholar 

  122. Kazakova TI, Zemelman BM, Labunets NF. About block formation and the infecting ability of some fleas of common voles from Dagestan mountain plague focus. Diseases with natural focality in the Caucasus. Stavropol; 1982. p. 70–2.

    Google Scholar 

  123. Suchkov EG, Naiden PE, Rozanova GN et al. Zoning of Central Caucasus natural focus of plague on the basis of some features of allocated here strains of plague microbe // Diseases with natural focality in the Caucasus. Stavropol; 1982. p. 127–8.

    Google Scholar 

  124. Popov NV, Warsawskiy BS. The activity of natural foci of plague in the CIS in 1978–1992. Problems of Particularly Dangerous Infections. 1993;3(73):3–15.

    Google Scholar 

  125. Dobronravov VP, Abdurakhmanov GA. About detection of plague epizootic among small gophers in the Malgobek district of the Chechen-Ingush ASSR. Problems of Particularly Dangerous Infections.1971;1. p. 167–8.

    Google Scholar 

  126. Toporkov VP, Podsvirin AV, Yashkuljv KB. Ecological and epidemiological monitoring of predictors of extreme epidemic situations in the natural foci of plague in the North-Western Caspian region. Elista; 1999. p. 126.

    Google Scholar 

  127. Popov NV, Rogatkin AA. Kozlov TA, Bukayeva IN. Cyclical of plague epizootic in the North and North-West of the Caspian region and its determining factors. Astrakhan; 1999. p. 112.

    Google Scholar 

  128. Atlas of especially dangerous infections spread in the Republic of Kazakhstan, edited by prof. Burdelov L A, Almaty; 2012. p. 232 (Rus, Kaz.).

    Google Scholar 

  129. Ergeshbayev MB, Seryakov VA, Sadykov AD, Burdelov LA. Some features of plague epizootic from 1988–1989 in Western Alai. Organisation in plague surveillance and measures for its prevention. Mater. interstate. scientific.-practical. conf. Alma-Ata; 1992. Part 2, p. 291–3.

    Google Scholar 

  130. Golubinskii EP, Zhovyi IF, Lemesheva LB. About the plague in Siberia. Irkutsk: Irkutsk University Publishing House; 1987. p. 244.

    Google Scholar 

  131. The atlas of Plague and its environments in the People’s Republic of China. Beijing: Science Press. 2000. p. 206.

    Google Scholar 

  132. Lipayev VM, Busoedova NM, Derevich SM et al. The main results of ten-year (1967–1976) epidemiological survey of the North-Western part of Mongolia. Epidemiology and prophylaxis of especially-dangerous infections in Mongolia and the USSR. Ulaanbaatar; 1977. p. 38–40.

    Google Scholar 

  133. Balakhonov SV, Batsuh D, Adyasuren Z, Tserenbuuzhid N. Spectrum of plasmids of Y. pestis strains from different mesofoci of plague of Mongolian Altai. Organisation in plague surveillance and measures for its prevention. Materials interstate.scientific-practical. conf. Alma-Ata. 1992; Part 1:p. 82–4.

    Google Scholar 

  134. Munhtuyaa O, Schur N, Sarah M. Application of serological diagnosis in the natural foci of Mongolia. Epidemiology and Prevention of especially-dangerous infections in Mongolia and the USSR: Ulaanbaatar; 1977. p. 71–4.

    Google Scholar 

  135. Munhtumur D, Oyuunchimeg D, Dorj S. Fleas of mammals and birds as prime cause of emergence of the natural foci of plague in the Mongolian Altai // Natural conditions, history and culture of Western Mongolia and adjacent regions: Materials of the VII International. conf. (19–23 Sep., 2005), Kyzyl. Tuv IKOPRSBRAS. 2005; Vol 1, p. 204–7

    Google Scholar 

  136. Nekipelov NV. Epizootology of plague in the Mongolian People’s Republic. Izv.Irkutsk.state: Anti-Plague.Research Institute of Siberia and Far East; 1959. V. 22. p. 108–243.

    Google Scholar 

  137. Otgonsuren L, Galbadrah D, Purevzhal C. Current condition of Khangay natural foci of plague. Problems of natural foci of plague. Abstracts.IV Soviet-Mongolian Conf. Antiplague professionals. Agencies. Irkutsk. 1980. Part 1. p. 68–9.

    Google Scholar 

  138. Batsuh D, Dembrel Zh, Dembrel B, Batbold Zh. Current condition of natural foci of plague of Mongolian People’s Republic. Nature focality of plague in the Mongolian People's Republic. Irkutsk. 1988;3–5.

    Google Scholar 

  139. Tarasov MP. Rodents of south-eastern part of the Mongolian Altai and adjacent Gobi // Mat. Irkutsk anti-plague research institute of Siberia and the Far East. 1958; 19, p. 60–71.

    Google Scholar 

  140. Kiefer M, Krumpal M, Cendsuren N et al. Cheklist, distribution and bibliography of Mongolian Siphonaptera. Erforshc. Biol. Ress. MVR (Halle). 1984. N. 4. p. 91–123.

    Google Scholar 

  141. Chinbold L. Natural foci of plague in the Gurvan-Saikhan mountains. International and national aspects of surveillance in plague. Irkutsk. 1975. p. 28–30.

    Google Scholar 

  142. Fenyuk BK. Notes about natural foci of plague and anti-plague work in the People’s Republic of China. ZHMEI. 1959, № 10, p. 8–16.

    Google Scholar 

  143. Barkov IP, Bazunov LP, Shiryaeva A. About plague among the Mongolian gerbil and midday jirds in the Central Asian foci. News of Irkutsk anti-plague research Institute of Siberia and Far East. 1959;20:117–9.

    Google Scholar 

  144. Lavrovskii AA, Kazakevich VP, Warsawskiy SN. Natural foci of plague in the Front and Southwest Asia. Problems of Particularly Dangerous Infections. 1973;2(30):9–22.

    Google Scholar 

  145. Baltazard M, Bamanyar M, Mostachfi P et al. Rechercessur la peste in Iran. Ibid. 1960b;23(2/3). p. 141–55.

    Google Scholar 

  146. Misonne X. Mammiferes de la Turquiesud-oriental et du Nord de la Syrie. Mammalia. 1957;21(1):53–67.

    Google Scholar 

  147. Baltazard M, Bamanyar M, Mofidi C, Seydian B. Le foyer de peste du Kurdistan. Bull WHO. 1952; 5(4). p. 441–72.

    Google Scholar 

  148. Karimi Y. Decouverte d’un nouveau mesofoyer de pestesauvagedans I’ Azarbaidjan oriental de I’Iran. Bull Soc Pathol Exot. 1980;73(1):28–35.

    CAS  Google Scholar 

  149. Bahmanyar M. Plague epidemics in Iran and their control. WHO. 1968, BD/PL/68.32. p. 1–7.

    Google Scholar 

  150. Warsawskiy SN, Kazakevitch VP. Biocenotic structure and landscape features of the foreign plague foci in the Front and Southwest Asia. Bul Mosc Soc Nat Dep Biol. 1984;89(1):13–20.

    Google Scholar 

  151. Kozlov MP, Sultanov GV. Epidemic manifestations of plague in the past and the present. Makhachkala, Dagest. Vol. publ. 1993. p. 336.

    Google Scholar 

  152. Neronov VM, Arsenyev LP. Zoogeographical analysis of Afghanistan rodent fauna // Modern problems of zoogeography.M: Science. 1980. p. 254–72.

    Google Scholar 

  153. Arsenyev LP, Neronov VM. Materials to the fauna of fleas of Afghanistan (Siphonaptera) // Parasitology. 1982; 16(4):306–314.

    Google Scholar 

  154. Akiev AK. About the great gerbil in the northern Afghanistan // rodents and their ectoparasites (ecology, epizootic value, control). Saratov: Publishing house of Saratov University; 1968. p. 422–24.

    Google Scholar 

  155. Almeida A. Rodent and vector surveillance in Brazil. Interregional meeting on prevention and control of plague. Antananarivo, Madagascar 1–11. April 2006. p. 36.

    Google Scholar 

  156. Dubyanskiy MA, Dubyanskaya LD, Nekrasova LE, Bakanurskaya TL. One more time about the importance of raptors as indicators of plague epizootic. Natural. foc. microbiology. and proph. zoonoses. Saratov; 1989. p. 40–43.

    Google Scholar 

  157. Yergaliev KH, Pole SB, Stepanov VM. Blood groups of the great gerbil (Rhombomys opimus Licht.) as supposed indicators of resistant populations to infection. // Genetics. - V. 26. - №1. - 1990. pp. 103–8.

    Google Scholar 

  158. Klassovkii LN, Kunitskii VN, Gauzshtein DM, Burdelov AS, Aykimbaev MA, Dubovitskii NM, Novikov GS, Rasin BV, Savelov YV. To the question about short-term prediction of the epizootic situation in the Ili-Karatal interfluves. Book: condition and perspectives of plague preventing. Abstracts of the all-union conference. Saratov. 1978. p. 69–71.

    Google Scholar 

  159. Suleimenov BM. The mechanism of plague epizootic. Almaty. 2004. p. 236.

    Google Scholar 

  160. Dubyanskiy VM, Burdelov LA, Barkley JL. Introduction to the computer modeling of the plague epizootic process. 07/2012; ISBN: 978-953-51-0685-2 In book: Automation, Chapter: 8, Publisher: In Tech, p. 149–70.

    Google Scholar 

  161. Shedrin VI. Morphological and histochemical data on blood digestion in some species of fleas – vectors of plague: PhD thesis abstract – Saratov; 1974. p. 16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir M. Dubyanskiy .

Editor information

Editors and Affiliations

Supplementary Details for “5.1.2 Distribution of Plague Foci”

Supplementary Details for “5.1.2 Distribution of Plague Foci”

5.1.1 5.1.2.1 Africa

5.1.1.1 5.1.2.1.1 North Africa (Group Countries)

  • Natural plague foci in North Africa have hardly been studied, although cases of plague in humans and camels in Libya, Tunisia, and Egypt have been described.

  • Hosts: Acomys cahirinus. The plague microbe was isolated in 1927–1928 [107].

Vectors: Verified data are lacking.

5.1.1.2 5.1.2.1.2 Mauritania, Western Sahara

  • Hosts: Psammomys obesus, with an ecology similar to that of Rhombomys opimus, Xerus erythropus, Mus musculus, Acomys cahirinus, Meriones libycus, Gerbillus pyramidum, G. gerbillus, G. agag, G. nanus. Dipodillus campestris, Pachyuromys duprasi, and Jaculus jaculus [108, 109]

  • Vectors: Xenopsylla ramesis, Synosternus cleopatrae, X. nubica [1]

5.1.1.3 5.1.2.1.3 Algeria

  • Hosts: Rattus rattus, Rattus norvegicus, gerbils of the genus Gerbillus and Meriones

  • Vectors: Xenopsylla cheopis

5.1.1.4 5.1.2.1.4 Democratic Republic of the Congo

  • Plague foci along the border with Tanzania:

  • Landscapes: Savanna

  • Hosts: Mastomys natalensis, Rattus rattus

  • Vectors: Xenopsylla brasiliensis, X. cheopis [30]

5.1.1.5 5.1.2.1.5 Uganda

  • Northern and western provinces:

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Mastomys natalensis, Rattus rattus

  • Vectors: Xenopsylla cheopis, Ctenocephalides spp. [30, 110]

5.1.1.6 5.1.2.1.6 Kenya

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Arvicanthis niloticus, Mastomys natalensis

  • Vectors: Xenopsylla cheopis, X. brasiliensis [30, 111]

5.1.1.7 5.1.2.1.7 Tanzania

  • The slopes of Mount Kilimanjaro and the area southeast of Lake Victoria:

  • Landscapes: 900–2500 m above sea level, forests, pastures

  • Hosts: Rattus rattus alexandrinus, Tatera robusta (Cretzschmar)

  • Vectors: Ctenophthalmus eximius, Nosopsyllus incisus [20, 30, 112, 113]

  • Epizootic area west of Lake Victoria borders plague foci in the Democratic Republic of the Congo:

  • Landscapes: The available literature lacks relevant information.

  • The southeast epizootic area borders the plague focus in Kenya:

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Lemniscomys griselda Thom., Lemniscomys striatus L. [20]

  • Both the area in the vicinity of Lake Rukk and the interstream area between the Greater Rvakh and Ruhundzhi share a focus with that in Malawi and Zambia:

  • Landscapes: The available literature lacks relevant information.

  • Hosts (for all foci in Tanzania): Rattus rattus alexandrines, Tatera robusta (Cretzschmar), Pelomys fallax (Peters), Lemniscomys griselda (Thomas), Lemniscomys striatus [19]

5.1.1.8 5.1.2.1.8 Namibia

  • Foci in the interstream area between Kunene and Okavango, on the Angola border:

  • Landscapes: Desert savanna

  • Hosts: Tatera schinzi, Desmodillus auricularis [30]

  • Landscapes: The available literature lacks relevant information.

  • Foci on the southern half of the Damaraland Plateau and the southern slopes of the Kamala Plateau:

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Tatera schinzi, Desmodillus auricularis

  • Vectors (for all foci in Namibia): X. philoxera, X. brasiliensis, and Dinopsyllus ellobius [30]

  • Foci on the Namaland Plateau

  • Landscapes: Sandy desert

  • Hosts: Tatera schinzi, Desmodillus auricularis [30]

  • Vectors: The available literature lacks relevant information.

5.1.1.9 5.1.2.1.9 Botswana

  • Foci east and west of the Okavango Delta and on the borders of Botswana, Namibia, and southern Angola:

  • Landscapes: Desert

  • Hosts: Tatera schinzi, Desmodillus auricularis [30]

  • Vectors: The available literature lacks relevant information.

  • Foci are also present in the south, just outside South Africa.

5.1.1.10 5.1.2.1.10 Malawi

  • Vectors: The available literature lacks relevant information.

5.1.1.11 5.1.2.1.11 Zambia

  • Focus of plague in eastern Zambia within the plateau; a single focus in Tanzania:

  • Hosts: Tatera valida

  • Vectors: Xenopsylla philoxera, X. hipponax [30]

5.1.1.12 5.1.2.1.12 Zimbabwe

  • Foci in most parts of the country:

  • Landscapes: Desert, savanna

  • Hosts: Tatera leucogaster, Aethomys chrysophilus [30]

  • Vectors: Xenopsylla philoxera, X. brasiliensis [114]

5.1.1.13 5.1.2.1.13 South Africa

5.1.1.14 5.1.2.1.14 Madagascar

  • Focal areas on the high plateau:

  • Landscapes: Madagascar savanna

  • Hosts: Rattus rattus

  • Vectors: Synopsylla fonquernii, Xenopsylla cheopis [30]

5.1.2 5.1.2.2 Southeast Asia

5.1.2.1 5.1.1.2.1 India

  • In northern India, foci on the Indo-Gangetic Plain:

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Tatera indica, Bandicota indica

  • Vectors: Xenopsylla astia, X. cheopis [30]

  • In central India, foci in Madhya Pradesh:

  • Vectors: The available literature lacks relevant information.

  • Hosts: Tatera indica, Bandicota indica

  • Vectors: Xenopsylla astia, X. cheopis [30]

  • Foci in southern India:

  • Vectors: The available literature lacks relevant information.

  • Hosts: Tatera indica, Bandicota indica

  • Vectors: Xenopsylla astia, X. cheopis [30]

5.1.2.2 5.1.1.2.2 Nepal

  • Vectors: The available literature lacks relevant information.

  • Hosts: Rattus rattus

  • Vectors: Xenopsylla cheopis [115]

5.1.2.3 5.1.1.2.3 Burma

  • Foci in the central uplands, between the Irrawaddy and Sittwe Rivers:

  • Vectors: The available literature lacks relevant information.

  • Hosts: Rattus rattus, Bandicota bengalensis

  • Vectors: Xenopsylla cheopis [116]

5.1.2.4 5.1.1.2.4 Thailand

  • Foci on the Khorat Plateau and in the northern and western parts of central Thailand:

  • Vectors: The available literature lacks relevant information.

  • Hosts: Rattus concolor, R. rattus

  • Vectors: Xenopsylla cheopis [30]

5.1.2.5 5.1.1.2.5 Vietnam

  • Landscapes: Coastal lowland plains

  • Hosts: Rattus rattus, R. norvegicus, R. indica

  • Vectors: Xenopsylla cheopis [30]

5.1.2.6 5.1.1.2.6 Indonesia

  • Foci on Java

  • Landscapes: Hillsides, highlands, plateaus with rice fields

  • Hosts: Rattus concolor, R. norvegicus

  • Vectors: Xenopsylla cheopis, Stivalius cognatus [30]

5.1.3 5.1.2.3 Countries of the Former USSR (Part of English Foci Names by Anisimov et al. [117], 2015; Zhou et al. [118])

5.1.3.1 5.1.2.3.1 Pre-Araks

  • Natural foci (07) (it is the registration number of focus according to the Russian system of count) in the low mountains:

  • Landscapes: Deserts, low mountains, midlands

  • Hosts: Meriones vinogradovi, M. persicus, M. tristrami, M. dahli, Allactaga elater, Microtus socialis, Mus musculus [119]

  • Vectors: Xenopsylla conformis conformis, Nosopsyllus iranus iranus, Pulex irritans [15]

5.1.3.2 5.1.2.3.2 Transcaucasian Valleys and Foothills

  • Natural foci in the Kur-Arak lowlands:

  • Landscapes: Dry steppes, semideserts, deserts

  • Hosts: Meriones libycus, M. tristrami, Mus musculus [15]

  • Vectors: Xenopsylla conformis conformis, Nosopsyllus laeviceps laeviceps [15]

5.1.3.3 5.1.2.3.3 Transcaucasian Highland

  • Group of autonomous natural foci (04–06):

  • Landscapes: Mountainous steppe, steppe, subalpine and alpine meadows

  • Hosts: Microtus arvalis, Microtus socialis, Mus musculus [25]

  • Vectors: Callopsylla caspia, Nosopsyllus consimilis [15]

5.1.3.4 5.1.2.3.4 Dagestan Highland

  • Natural focus (39) located at 2,000–3,000 m above sea level:

  • Landscapes: Alpine meadows

  • Hosts: Microtus arvalis, Cricetulus migratorius, Arvicola terrestris [112, 121]

  • Vectors: Callopsylla caspia, Amalaraeus dissimilis dagestanicus [15, 122]

5.1.3.5 5.1.2.3.5 Central Caucasian

  • Natural focus of plague (1) at Mount Elbrus:

  • Landscapes: Mountain steppes, alpine and subalpine meadows

  • Hosts: Spermophilus musicus, Microtus arvalis, Sylvaemus uralensis, Mus musculus [15, 119]

  • Vectors: Citellophilus tesquorum caucasicus , Neopsylla setosa [15, 123]

  • Dagestan valleys and foothills: Natural foci of plague (03) in the Caspian Plain within Dagestan

  • Landscapes: Deserts, semideserts

  • Hosts: Spermophilus pygmaeus, Meriones tamariscinus, Mus musculus [15, 124]

  • Vectors: Neopsylla setosa, Citellophilus tesquorum caucasicus [15]

  • Terek-Sunzha natural focus of plague (02) near the Terek and Sunzha Rivers:

  • Landscapes: Desert steppes

  • Hosts: Spermophilus pygmaeus [15, 119]

  • Vectors: Neopsylla setosa, Citellophilus tesquorum [125]

  • 5.1.2.3.6 Pre-Caspian sandy natural foci (43) in sandy regions near the Caspian Sea in the Republics of Kalmykia, Dagestan, and Stavropol:

  • Landscapes: Semideserts

  • Hosts: Meriones meridianus, Spermophilus pygmaeus [126]

  • Vectors: Nosopsyllus laeviceps, Xenopsylla conformis conformis [127]

  • 5.1.2.3.7 Pre-Caspian northwestern natural foci of plague (14) in the Astrakhan region, Kalmykia, Northwest Caspian steppe:

  • Landscapes: Semideserts

  • Hosts: Spermophilus pygmaeus, Meriones meridianus, Mus musculus [119]

  • Vectors: Citellophilus tesquorum, Neopsilla setosa [1]

  • 5.1.2.3.8 Volga-Ural steppe natural foci of plague (15) in the northern Volga and Ural interstream, from the Caspian lowland to the Common Syrt:

  • Landscapes: Steppe, semideserts

  • Hosts: Spermophilus pygmaeus pygmaeus [128]

  • Vectors: Neopsilla setosa, Citellophilus tesquorum transvolgensis [128]

  • 5.1.2.3.9 Volga-Ural sandy natural foci of plague (16) in the southern part of the Caspian Depression, in the Ural and the Volga interstream

  • Landscapes: Sandy

  • Hosts: M. meridianus, M. tamariscinus, Spermophilus fulvus, Mus musculus

  • Vectors: X. conformis, Nosopsyllus laeviceps [128]

  • 5.1.2.3.10 Trans-UralTrans-Ural natural foci of plague (17) east of the Ural River in West Kazakhstan, Aktobe and Atyrau regions

  • Landscapes: Steppes, semideserts

  • Hosts: S. pygmaeus, Rhombomys opimus [128]

  • Vectors: N. setosa, C. tesquorum [128]

5.1.3.6 5.1.2.3.11 Central Asian Desert

  • 5.1.2.3.11.1 Ural-Emba autonomous plague focus (18) in the Ural-Emba desert between the Ural and Emba Rivers

  • Landscapes: Semideserts, river floodplains

  • Hosts: Rhombomys opimus, M. tamariscinus, M. meridianus [128]

  • Vectors: X. skrjabini, N. laeviceps, C. lamellifer [128]

  • 5.1.2.3.11.2 Pre-Ustyurt autonomous desert plague foci (19) between the Emba River, Ustyurt Plateau, and Caspian Sea

  • Landscapes: Semideserts, deserts

  • Hosts: Rhombomys opimus, M. lybicus, M. meridianus [128]

  • Vectors: X. skrjabini, C. lamellifer, N. laeviceps [128]

  • 5.1.2.3.11.3 Mangyshlak autonomous plague focus (23) in the Mangyshlak Desert and in Mangistau region covering an area of the Buzachi Peninsula that includes the plains and mountains of the Mangyshlak region

  • Landscapes: Deserts

  • Hosts: Rhombomys opimus, M. lybicus

  • Vectors: X. skrjabini, X. nuttalii [128]

  • 5.1.2.3.11.4 Ustyurt autonomous plague focus (20) on the Ustyurt Plateau of the Ustyurt Desert between the Mangyshlak region to the west and the Aral Sea to the east in the territories of the Republics of Kazakhstan and Uzbekistan

  • Landscapes: Deserts

  • Hosts: Rhombomys opimus, C. migratorius [128]

  • Vectors: X. skrjabini, X. nuttalii, X. g. caspica [128]

  • 5.1.2.3.11.5 North-Pre-Aral autonomous plague focus (21) in the northwest pre-Aral region including Large and Small Badger Sands in the North Pre-Aral Desert

  • Landscapes: Deserts

  • Hosts: Rhombomys opimus, M. lybicus, M. meridianus [128]

  • Vectors: X. skrjabini, C. lamellifer, N. laeviceps [128]

  • 5.1.2.3.11.6 Pre-Aral-Karakum autonomous focus (24) in the Pre-Aral Karakum Desert and the Aktobe, Kyzylorda, and Karaganda regions of Kazakhstan northeast of the Aral Sea

  • Landscapes: Sandy, clayey, gravelly deserts

  • Hosts: Rhombomys opimus, M. lybicus, M. meridianus

  • Vectors: X. skrjabini, C. lamellifer, N. laeviceps [128]

  • 5.1.2.3.11.7 Trans-Aral autonomous focus (22) in the Aryskum-Daryalyktakyr Desert and theKyzylorda and Karaganda regions of Kazakhstan

  • Landscapes: Sandy deserts

  • Hosts: Rhombomys opimus, M. lybicus, M. meridianus

  • Vectors: X. gerbilli, X. skrjabini [128]

  • 5.1.2.3.11.8 Karakum autonomous focus (25) in Karakum Desert, Turkmenistan

  • Landscapes: Sandy deserts

  • Hosts: Rhombomys opimus, M. lybicus, M. meridianus

  • Vectors: X. gerbilli, X. hirtipes [1]

  • 5.1.2.3.11.9 Kopet Dag autonomous desert focus (26) in Southwestern Kopet Dag

  • Landscapes: Desertified lowlands

  • Hosts: Rhombomys opimus, M. lybicus

  • Vectors: X. conformis, N. laeviceps [1]

  • 5.1.2.3.11.10 Kyzylkum autonomous focus (27) in the Kyzylkum Desert within Kazakhstan, Uzbekistan, and Turkmenistan’s eastern outskirts

  • Landscapes: Sandy deserts

  • Hosts: Rhombomys opimus, M. lybicus, M. meridianus

  • Vectors: X. gerbilli, X. hirtipes, X. skrjabini [128]

  • 5.1.2.3.11.11 Muyunkum autonomous focus (28) in the northern Muyunkum Desert, in the subzone within the territories of the Zhambyl and South Kazakhstan regions

  • Landscapes: Deserts

  • Hosts: Rhombomys opimus, M. lybicus, M. meridianus

  • Vectors: X. g. minax, X. conformis [128]

  • 5.1.2.3.11.12 Taukum autonomous focus (29) in the Taukum Desert within the territory of Almaty and Zhambyl between the Ili River in the north and the Chu-Ili Mountains in the south

  • Landscapes: Deserts

  • Hosts: Rhombomys opimus, M. lybicus, M. tamariscinus

  • Vectors: X. skrjabini, X. hirtipes, X. g. minax [128]

  • 5.1.2.3.11.13 Pre-Balkhash autonomous focus (30) in the Balkhash Desert within the territory of Almaty in the interfluves of the Ili-Karatal, Aksu, and Lepsy Rivers

  • Landscapes: Deserts

  • Hosts: Rhombomys opimus, M. meridianus

  • Vectors: X. g. minax, X. hirtipes, X. skrjabini [128]

  • 5.1.2.3.11.14 Betpak-Dala autonomous focus (42) in the Betpakdala Desert west of the Sarysu River and probably extending until Balkhash Lake in the east within Zhambyl and South Kazakhstan

  • Landscapes: Deserts

  • Hosts: Rhombomys opimus, M. lybicus

  • Vectors: X. g. minax, X. conformis [128]

  • 5.1.2.3.11.15 In the Pre-Alakol Lowlands, an autonomous focus (45) in the eastern Pre-Alakol and Dzungarian Gate,wwith a difference in height of 400–900 m above sea level

  • Landscapes: Deserts

  • Hosts: Rhombomys opimus, M. meridianus, M. lybicus

  • Vectors: X. g. minax, X. skrjabini, X. conformis [128]

  • 5.1.2.3.11.16 In the Ili Intermountains: an autonomous focus (46) in the Ili valley from the Kapshagai Reservoir in the west to the border with China in the east and from the lowlands of the southern Jungar Ridge in the north to the foothills of Ketmen, Turaigyr, and Trans-Ili Alatau in the south

  • Landscapes: Deserts, desert lowlands

  • Hosts: Rhombomys opimus, M. meridianus

  • Vectors: X. g. minax, X. hirtipes, X. skrjabini [128]

  • 5.1.2.3.12 Talas: a natural focus (40) in Kyrgyzstan on the northern macroslope of the Talas Ridge from Manas City in the west until the Kolba Ridge in the east extending north to the slopes of the Kyrgyz Ridge (including the Kazakh portion)

  • Landscapes: Mountain steppes, meadow steppes, alpine meadows 1600–3700 m above sea level

  • Hosts: Marmota caudata

  • Vectors: Citellophilus lebedevi , Pulex irritans [128]

  • 5.1.2.3.13 Gissar: a natural focus (34) on the northern macroslope of the Gissar Ridge (Tajikistan)

  • Landscapes: Tree and shrub belts, subalpine meadows

  • Hosts: Microtus juldaschi, Marmota caudata [119]

  • Vectors: Callopsylla caspia, Frontopsylla glabravara [17]

  • 5.1.2.3.14 Sarydzhaz natural focus (foci) of plague in the Tian Shan Mountains in the Sarydzhaz Mountains: an autonomous focus (31) within the Almaty region of Kazakhstan and the Issyk-Kul region of Kyrgyzstan on the slopes of Sary-Djaz on the northeastern tip of the Terskey Alatau Ridge

  • Landscapes: Midlands, highland areas

  • Hosts: Marmota baibacina

  • Vectors: Oropsylla silantiewi, Rhadinopsylla liventricosa, Citellophilus lebedevi [128]

  • 5.1.2.3.15 Upper Naryn autonomous focus (32) within Kyrgyzstan

  • Landscapes: Midlands, mountainous areas

  • Hosts: Marmota baibacina

  • Vectors: Oropsylla silantiewi, Rhadinopsylla liventricosa, Citellophilus lebedevi [128]

  • 5.1.2.3.16 Aksaiautonomous focus (33), within Kyrgyzstan

  • Landscapes: Midlands, mountainous areas

  • Hosts: Marmota baibacina

  • Vectors: Oropsylla silantiewi, Rhadinopsylla liventricosa, Citellophilus lebedevi [128]

  • 5.1.2.3.17 Alai natural focus (35) located on the slopes of the Alai Ridge (Kyrgyzstan)

  • Landscapes: Mountain steppes and subalpine and alpine meadows 2800–5000 m above sea level

  • Hosts: Marmota caudata, Alticola argentatus [129]

  • Vectors: Oropsylla silantiewi crassa, Citellophilus lebedevi princeps [129]

  • 5.1.2.3.18 Mountain-Altai(or Saylyugem, Mongolia), focus (36) in the mountain range of Saylyugem, Kurai, South Chu

  • Landscapes: Mountain steppes, alpine meadows 2000–2500 m above sea level

  • Hosts: Ochotona pallasi, O. alpine[1]

  • Vectors: Paradoxopsyllus scorodumovi, Rhadinopsylla dahurica dahurica [1]

  • 5.1.2.3.19 Tuva (Mongun-Taiga) focus (37) in the Republic of Tyva in the south adjacent to the Hanhiro-Turgensk natural focus (Mongolia):

  • Landscapes: Mountain steppes 1650–2550 m above sea level

  • Hosts: Spermophilus undulatus, Ochotona pallasi [119]

  • Vectors: Citellophilus tesquorum altaicus, Amphalius runatus [1]

  • 5.1.2.3.20 Trans-Baikal natural plague focus (38) in the trans-Baikal steppe; (Russia) and foci in Mongolia (Mongolia-Daurian) and China (Barginsky or Hulun-Byrsk focus):

  • Landscapes: Steppe

  • Hosts: Spermophilus dauricus, Marmota sibirica [130]

  • Vectors: Citellophilus tesquorum sungaris, Oropsylla silatiewi [119, 131]

  • 5.1.2.3.21 Dzungarian Highland natural focus (44) of mixed type (vole-ground squirrel-marmot) in the Dzungarian Highlands (Dzungarian Alatau) wwith a presumably larger part of the focus in China on the Boro-Horo Ridge

  • Landscapes: Subalpine and alpine meadows

  • Hosts: Microtus kirgizorum, Spermophilus undulates

  • Vectors: C. tesquorum, Ct. arvalis, C. ullus, C. assimilis, F. elata [120]

5.1.4 5.1.2.4 Mongolia

  • 5.1.2.4.1 In Khan-Khukhey natural focus in the Altai Mountain system on the Khan-Khukhey Ridge

  • Landscapes: Mountain steppes 2500–2800 m above sea level

  • Hosts: Marmota sibirica, Spermophilus undulatus [124, 183]

  • Vectors: Specific fleas

  • 5.1.2.4.2 KhuKh-Serkh-Munkh-Khairkhan natural focus in the central part of the Mongolian Altai

  • Landscapes: Subalpine and alpine meadows

  • Hosts: Marmota baibacina, Marmota sibirica [1]

  • Vectors: Oropsylla silantiewi

  • 5.1.2.4.3 Gobi Altai Mountains natural focus 3000–3500 m above sea level

  • Landscapes: Mountain steppes

  • Hosts: Marmota sibirica, Ochotona pallasi, Spermophilus undulates [133, 134]

  • Vectors: Oropsylla silantiewi, Paramonopsyllus scalonae, Citellophilus tesquorum altaicus [127]

  • 5.1.2.4.4 Changay Mountain Steppe focus in central Mongolia, in the area of the Khangai Highlands

  • Landscapes: Dry plains and mountain steppe 1200–3000 m above sea level

  • Hosts: Marmota sibirica, Spermophilus undulatus [136, 137]

  • Vectors: Oropsylla silantiewi, Citellophilus tesquorum sungaris [1], [137]

  • 5.1.2.4.5 Khentey natural focus south and southeast of the highlands

  • Landscapes: Steppe 1500–2000 m above sea level

  • Hosts: Marmota sibirica, Spermophilus undulates [128, 138].

  • Vectors: Oropsylla silantiewi [1]

  • 5.1.2.4.6 Mongolian Altai Plain natural focus in the Altaic Gobi

  • Landscapes: Gravelly desert

  • Hosts: Rhombomys opimus, Meriones meridianus [128, 139]

  • Vectors: Xenopsylla conformis conformis, X. skrjabini [140]

  • 5.1.2.4.7 In Gurvan Saikhan, a natural focus in the South Gobi Gurvan Saikhan Mountains

  • Landscapes: Desert steppes 2400–2800 m above sea level

  • Hosts: Ochotona pallasi, O. daurica, Meriones unguiculatus [138, 141]

  • Vectors: Amphalius runatus, Ctenophyllus hirticrus [141]

  • 5.1.2.4.8 On the South Gobi Plain, a natural focus probably connected with that of Inner Mongolia

  • Landscapes: Gravelly desert

  • Hosts: Rhombomys opimus, Meriones meridianus [1]

  • Vectors: Xenopsylla skrjabini, X. conformis conformis [1]

5.1.5 5.1.2.5 China

  • 5.1.2.5.1 Plague focus in the Dzungarian Alatau

  • Landscapes: Mountain steppes, subalpine meadows

  • Hosts: Marmota baibacina, Spermophilus undulates [142]

  • Vectors: Oropsylla silantiewi, Citellophilus tesquorum altaicus, C. tesquorum dzetysuensis [131]

  • 5.1.2.5.2 Inner Mongolia, a natural focus in Dzamin-Uden, Erlyan

  • Landscapes: Semideserts, deserts

  • Hosts: Meriones unguiculatus, Ochotona daurica, O. pallasi [131, 136, 143]

  • Vectors: Xenopsylla conformis conformis, Nosopsyllus laeviceps kuzenkovi, Neopsylla pleskei orientalis [131, 140]

  • 5.1.2.5.3 Xilingol Grassland, a natural focus east of Inner Mongolia

  • Landscapes: Steppe, desert 1100–1300 m above sea level

  • Hosts: Lasiopodomys brandtii, Spermophilus dauricus [131]

  • Vectors: Frontopsylla luculenta luculenta, Amphipsalta primaries mitis, Neopsylla pleskei orientalis [128]

  • 5.1.2.5.4 In Sungari-Lyaoh (Manchuria), a natural focus in northeast China

  • Landscapes: Forest, wet steppes

  • Hosts: Spermophilus dauricus, Rattus norvegicus [131]

  • Vectors: Citellophilus tesquorum sungarus, Xenopsylla cheopis [131]

  • 5.1.2.5.5 Gansu-Ningxia Hui (Ordos, Shaanxi): Natural focus in the Loess Plateau

  • Landscapes: Dry steppes 1500–2950 m above sea level

  • Hosts: Spermophilus alashanicus, Ochotona daurica [131]

  • Vectors: Neopsylla abagaitui, Citellophilus tesquorum mongolicus [131]

  • 5.1.2.5.6 Qinghai-Tibet natural focus in the Tibetan Plateau

  • Landscapes: Subalpine and alpine meadows 2700–5450 m above sea level

  • Hosts: Marmota himalayana, Allactaga sibirica [131]

  • Vectors: Oropsylla silantiewi, Callopsylla dolabris [131]

5.1.6 5.1.2.6 Near East

5.1.6.1 5.1.2.6.1 Yemen

  • Hosts: Rattus rattus, Meriones sp.

  • Vectors: The available literature lacks relevant information.

5.1.6.2 5.1.2.6.2 Saudi Arabia

  • Saudi-Yemeni: Natural focus on the desert plains and uplands along the Saudi Arabia-Yemen border:

  • Landscapes: Up to a height of 1000 m above sea level, rocky and sandy deserts, desert savannas, shrub-tree xerophilic communities

  • Possible hosts: Gerbillus nanus, G. cheesmani, Meriones rex, Rattus rattus, Mus musculus, Acomys cahirinus, Jaculus jaculus [144]

  • 5.1.2.6.3 In the Lebanese mountains and on the steppe, foci near the Syrian coast and the mountainous parts of Lebanon and northern Israel

  • Landscapes: Forb-grass mountain steppes

  • Hosts: Gerbils of the genus Meriones

  • 5.1.2.6.4 In the Syrian-Mesopotamian Desert: natural foci in Upper and Lower Mesopotamia, the Syrian Plateau, and Kuwait

  • Landscapes: Desert flood plains of the Tigris and Euphrates Rivers and surrounding desert plateau

  • Hosts: Meriones libycus, Tatera indica, Nesokia indica, Rattus rattus, Rattus norvegicus, Mus musculus. Perhaps: Gerbillus cheesmani, G. dasyurus, G. nanus, Meriones crassus [144]

  • Vectors: Xenopsylla buxtoni, X. astia, Stenoponia tripectinata insperata; plague transmission from rodents to humans via the human flea Pulex irritans [145]

  • 5.1.2.6.5 Natural foci in the semidesert and desert of southern Turkey, northern Syria

  • Landscapes: rocky ephemeral-wormwood deserts

  • Hosts: Mesocricetus brandti, Microtus socialis, Tatera indica, Meriones vinogradovi, M. libycus, M. tristrami, Nesokia indica [146]

  • Vectors: Xenopsylla buxtoni

  • 5.1.2.6.6 Kurds-Iranian mountains and steppe: Natural focus in the western Iranian plateau, southeastern Turkey, northeastern Iraq [1]

  • Landscapes: Mountain plateaus, intermountain valleys 1000–2000 m above sea level, covered with herb-grass steppes

  • Hosts: Meriones persicus, M. libycus, M. vinogradovi, M. tristrami [145], Allactaga elater, Mesocricetus brandti, Ellobius lutescens [147, 148]

  • Vectors: Xenopsylla buxtoni, X. conformis conformis, Nosopsyllus iranus iranus, Stenoponia tripectinata insperata [147, 148], Pulex irritans [149], and others [1]

  • 5.1.2.6.7 Natural focus in the Armenian-Anatolian mountains and steppe, previously considered part of the Kurdish-Iranian focus

  • Landscapes: Steppe, mountain steppe

  • Hosts: Meriones libycus, Spermophilus xanthoprymnus [1, 150]

  • Vectors: Same as those of the Kurdish-Iranian focus

  • 5.1.2.6.8 In the Iran-Afghan Desert lowlands, a natural focus in the central low and northern mountains of Iran, Afghanistan's western plateau

  • Landscapes: Semideserts, deserts of Turan and Southwest Asia, and possibly on the outskirts of the Central Asian desert focus [151]:

  • Hosts: Rhombomys opimus, Meriones libycus, M. meridianus, Mus musculus [1]

  • Vectors: Xenopsylla gerbilli, X. nuttalli, X. conformis conformis, Nosopsyllus laeviceps [1]

  • 5.1.2.6.9 Along the South Afghan flats, a natural focus in the sandy desert of Registan, sands in the lower reaches of the Helmand River, and the clay-stony desert Dasht-Markokhim

  • Hosts: Rhombomys opimus, Meriones persicus, M. libycus, Mus musculus [152]

  • Vectors: Xenopsylla cheopis, X. gerbilli, X. conformis conformis [153]

  • 5.1.2.6.10 Natural foci in the Afghan-Pakistani midland desert-steppe of central, eastern Afghanistan and the western regions of Pakistan

  • Landscapes: Subtropical dry mountain steppes, acacia woodlands

  • Hosts: Meriones libycus, M. persicus, Marmota caudata, Spermophilus fulvus, Mus musculus, Rattus rattus [152]

  • Vectors: Xenopsylla cheopis, X. gerbilli, X. conformis conformis [153]

  • 5.1.2.6.11 Natural focus in the Hindu Kush Highlands [150]

  • Landscapes: Alpine herb-grass meadows

  • Hosts: Marmota caudata, Dryomysnitedula, Microtus juldashi, Meriones persicus, Mus musculus

  • Vectors: Xenopsylla cheopis, Citellophilus lebedevi, Frontopsylla protera

  • A focus in Northern Afghanistan: within the range of Rhombomys opimus [154]

5.1.7 5.1.2.7 North America

  • 5.1.2.7.1 In California and Oregon, foci, between the ridges of the Sierra Nevada and the coast, and the San Joaquin and Sacramento Rivers

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Spermophilus beecheyi

  • Vectors: Diamanus montanus, Hoplopsyllus anomalus [30]

  • 5.1.2.7.2 In Oregon, Idaho, Montana, and Wyoming, in theBlue Cascade Mountains, Bitter Root Ridge, and eastern slopes of Moustache Ridge

  • Hosts: Citellus lateralis, Citellus richardsoni [30]

  • Nevada and Utah: Foci in the basin of the Great Salt Lake

  • Landscapes: Desert

  • Hosts: Neotoma lepida, Cynomys parvidens

  • 5.1.2.7.3 In New Mexico, Arizona, and Utah, foci in the Colorado Plateau and Llano Estacado (entering the territory of Mexico)

  • Landscapes: Deserts and steppes

  • Hosts: Cynomys ludovicianus, C. gunnisoni

  • 5.1.2.7.4 In California, foci in the mountainous area of San Bruno

  • Hosts: Microtus californicus, Peromyscus maniculatus [30]

  • Vectors (for the whole territory): Oropsylla montana, O. idahoensis, Ceratophyllus ciliatus, Orchopeas nepos (Smith et al., 2009)

5.1.8 5.1.2.8 South America

5.1.8.1 5.1.2.8.1 Argentina

  • 5.1.2.8.1.1 Foci in the provinces of Santiago del Estero, Salta, Catamarca

  • Landscapes: Rainforests

  • Hosts: Microcavia australis, Galeamus teloides [30]

  • 5.1.2.8.1.2 Foci in the provinces of Cordoba, San Juan, Mendoza, La Pampa, and Rio Negro, on the eastern slopes of the Andes

  • Landscapes: Alpine steppe

  • Hosts: Microcavia australis, Galeamus teloides

  • Focus in Buenos Aires Province

  • Landscapes: Steppe

  • Hosts: Microcavia australis [30]

  • Vectors: The available literature lacks relevant information.

5.1.8.2 5.1.2.8.2 Bolivia

  • 5.1.2.8.2.1 Foci in the departments of Chuquisaca, Santa Cruz, Tarija, probably connected with the northern foci of Argentina

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Genus Graomys, Hesperomys

  • Vectors: Puligenis biturdus, P. bochisi [30]

5.1.8.3 5.1.2.8.3 Brazil

  • 5.1.2.8.3.1 Enzootic areas in Sinara, Pernambuco, Paraiba, Alagoas, Bahia, Minas Gerais, Teresopolis

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Cavia aperea, C. spixii, Oryzomys subflavus, Zygedon tomispixuna

  • Vectors: Poligenis bohsli, P. tripus [30, 155]

5.1.8.4 5.1.2.8.4 Ecuador

  • 5.1.2.8.4.1 Natural focus in Manabi, western Ecuador

  • Hosts: Sigmodon hispidus

  • Vectors: X. cheopis [30]

  • 5.1.2.8.4.2 Natural foci in Chimborazo and Tungurahua, central Ecuador

  • Landscapes: Alpine steppes

  • Hosts: Sylvilagus brasiliensis

  • Vectors: Pleochaetis dolens, Hoplopsyllus manconis [30]

  • 5.1.2.8.4.3 Natural foci in Loho and El Oro, southern Ecuador

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Sciurus stramineus, Akodon mollis

  • Vectors: Poligenis litardus, Pulex irritans [30]

5.1.8.5 5.1.2.8.5 Peru

  • 5.1.2.8.5.1 In northern Peru: possibly the same focus as that in Ecuadorian Loho and El Oro Provinces [30]

  • Hosts: Sciurus stramineus, Akodon mollis

5.1.8.6 5.1.2.8.6 Venezuela

  • 5.1.2.8.6.1 Nature foci in the states of Miranda and Aragua

  • Hosts: Sigmodon hispidus, Heteromys anomalus [30]

  • Vectors: The available literature lacks relevant information.

5.1.9 5.1.2.9 Hawaiian Islands

  • Possible foci of plague in the districts of Hamakura and Hilo:

  • Landscapes: The available literature lacks relevant information.

  • Hosts: Rattus hawaiiensis

  • Vectors: Xenopsylla vexabilis [30]

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dubyanskiy, V.M., Yeszhanov, A.B. (2016). Ecology of Yersinia pestis and the Epidemiology of Plague. In: Yang, R., Anisimov, A. (eds) Yersinia pestis: Retrospective and Perspective. Advances in Experimental Medicine and Biology, vol 918. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0890-4_5

Download citation

Publish with us

Policies and ethics