Skip to main content

Abstract

High temperature superconductors have unique properties that can be useful in the THz region, single crystal constituted from superconducting CuO2-layers could sustain high voltages across the junctions and they are coupled through the intrinsic Josephson Effect this maintains the potential for very intense, coherent radiation which spreads over the THz gap. We investigated various experimental techniques to fabricate THz sources, bolometers and filters for efficient THz emission and detection. Rectangular mesa structures were fabricated on Bi2Sr2CaCu2O8-x (Bi2212) single crystal superconductors using standard e-beam lithography and Ar ion beam etching systems and an emitted power as high as 60 μW at frequencies up to 0.85 THz was detected from micron sized continuous wave terahertz sources. We also fabricated bolometric microchips for THz detection purpose from Bi2212 single crystals. Bi2212 microchips detected the signals and response time were calculated, our results have clearly shown that Bi2212 single crystals are potential candidates for THz detection. The detection properties and sensitivity of bolometer chips can be further improved by integrating an antenna and filter structures. In order to investigate this we have fabricated metamaterial THz filters based on metals and YBa2Cu3Ox superconducting thin films with metal-mesh shape and a unique fourcross shape pattern. Both a THz time domain spectrometer and a Fourier transform infrared spectrometer (FTIR) were used to investigate the performance of these filters and the results were compared with simulations done with a commercially available electromagnetic simulation software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photon 1:97–105

    Article  ADS  Google Scholar 

  2. Ferguson B, Zhang X-C (2006) Materials for terahertz science and technology. Nat Mater 1:26–33

    Article  ADS  Google Scholar 

  3. Pickwell E, Wallace VP (2006) Biomedical applications of terahertz technology. J Phys D 39:R301–R310

    Article  ADS  Google Scholar 

  4. Ozyuzer L, Koshelev AE, Kurter C, Gopalsami N, Li Q, Tachiki M, Kadowaki K, Yamamoto T, Minami H, Yamaguchi H et al (2007) Emission of coherent THz radiation from superconductors. Science 318:1291

    Article  ADS  Google Scholar 

  5. Woodward RM, Cole BE, Wallace VP, Pye RJ, Arnone D, Linfield EH, Pepper M (2002) Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Med Biol 47:3853–3863

    Article  Google Scholar 

  6. Kleiner R, Steinmeyer F, Kunkel G, Müller P (1992) Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys Rev Lett 68:2394

    Article  ADS  Google Scholar 

  7. Kadowaki K, Yamaguchi H, Kawamata K, Yamamoto T, Minami H, Kakeya I, Welp U, Ozyuzer L, Koshelev A, Kurter C, Gray KE, Kwok WK (2008) Direct observation of terahertz electromagnetic waves emitted from intrinsic Josephson junctions in single crystalline Bi2Sr2CaCu2O8+δ. Physica C Supercond 468:634–639

    Article  ADS  Google Scholar 

  8. Wang HB, Guénon S, Yuan J, Iishi A, Arisawa S, Hatano T, Yamashita T, Koelle D, Kleiner R (2009) Hot spots and waves in Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks-a study by low temperature scanning laser microscopy. Phys Rev Lett 102:017006

    Article  ADS  Google Scholar 

  9. Demirhan Y, Saglam H, Turkoglu F, Alaboz H, Ozyuzer L, Miyakawa N, Kadowaki K (2015) Area dependence and influence of crystal inhomogeneity on superconducting properties of Bi2212 mesa structures. Vacuum 120:89–94

    Article  ADS  Google Scholar 

  10. Guénon S, Grünzweig M, Gross B, Yuan J, Jiang Z, Zhong Y et al (2010) Interaction of hot spots and THz waves in Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks of various geometry. Phys Rev B 82:214506

    Article  ADS  Google Scholar 

  11. Kadowaki K, Tsujimoto M, Yamaki K, Yamamoto T, Kashiwagi T, Minami H et al (2010) Evidence for a dual-source mechanism of terahertz radiation from rectangular mesas of single crystalline Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions. J Phys Soc Jpn 79:023703

    Article  ADS  Google Scholar 

  12. Ozyuzer L, Simsek Y, Koseoglu H, Turkoglu F, Kurter C, Welp U et al (2009) Terahertz wave emission from intrinsic Josephson junctions in high-Tc superconductors. Supercond Sci Technol 22:114009

    Article  ADS  Google Scholar 

  13. Turkoglu F, Koseoglu H, Demirhan Y, Ozyuzer L, Preu S, Malzer S, Simsek Y, Müller P, Yamamoto T, Kadowaki K (2012) Interferometer measurements of terahertz waves from Bi2Sr2CaCu2O8+d mesas. Supercond Sci Technol 25:125004

    Article  Google Scholar 

  14. Turkoglu F, Ozyuzer L, Koseoglu H, Demirhan Y, Preu S, Malzer S et al (2013) Emission of the THz waves from large area mesas of superconducting Bi2Sr2CaCu2O8+d by the injection of spin polarized current. Phys C Supercond 491:7

    Article  ADS  Google Scholar 

  15. Karasik BS, McGrath WR, Wyss RA (1999) Optimal choice of materials for HEB superconducting mixers. IEEE Transc Appl Supercond 9:4213–4216

    Article  ADS  Google Scholar 

  16. Hammar A, Cherednichenko S, Bevilacqua S, Drakinskiy V, Stake J (2011) Terahertz direct detection in YBa2Cu3O7 microbolometers. IEEE Trans Terahertz Sci Technol 1(2):390–394

    Article  ADS  Google Scholar 

  17. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:788

    Article  ADS  Google Scholar 

  18. Soukoulis CM, Wegener M (2010) Materials science. Optical metamaterials--more bulky and less lossy. Science 330:1633

    Article  ADS  Google Scholar 

  19. Singh R, Tian Z, Han J, Rockstuhl C, Gu J, Zhang W (2010) Cryogenic temperatures as a path toward high-Q terahertz metamaterials. Appl Phys Lett 96(7):071114

    Article  ADS  Google Scholar 

  20. Zhang CH, Wu JB, Jin BB, Ji ZM, Kang L, Xu WW, Chen J, Tonouchi M, Wu PH (2012) Low-loss terahertz metamaterial from superconducting niobium nitride films. Opt Express 20:42–47

    Article  ADS  Google Scholar 

  21. Chen H-T, Yang H, Singh R, O’Hara JF, Azad AK, Trugman SA, Jia QX, Taylor AJ (2010) Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys Rev Lett 105:247402

    Article  ADS  Google Scholar 

  22. Kang L, Jin BB, Liu XY, Jia XQ, Chen J, Ji ZM, Xu WW, Wu PH, Mi SB, Pimenov A, Wu YJ, Wang BG (2011) Suppression of superconductivity in epitaxial NbN ultrathin films. J Appl Phys 109(3):033908

    Article  ADS  Google Scholar 

  23. Glossner A, Zhang C, Kikuta S, Kawayama I, Murakami H, Muller P, Tonouchi M (2012) Cooper pair breakup in YBa2Cu3O7−under strong terahertz fields arXiv:1205 1684v1

    Google Scholar 

  24. Singh R, Chowdhury DR, Xiong J, Yang H, Azad AK, Taylor AJ, Jia QX, Chen HT (2013) Influence of film thickness in THz active metamaterial devices: a comparison between superconductor and metal split-ring resonators. Appl Phys Lett 103:061117

    Article  ADS  Google Scholar 

  25. Oriaku CI, Pereira MF (2017) Analytical solutions for semiconductor luminescence including Coulomb correla-tions with applications to dilute bismides. J Opt Soc Am B 34:321

    Article  ADS  Google Scholar 

  26. Pereira MF (2018) Analytical expressions for numerical characterization of semiconductors per comparison with luminescence. Materials 11:2

    Article  ADS  Google Scholar 

  27. Pereira MF (2016) The linewidth enhancement factor of intersubband lasers: from a two-level limit to gain with-out in-version conditions. Appl Phys Lett 109:222102

    Article  ADS  Google Scholar 

  28. Pereira MF, Zubelli PJ, Winge D, E J, Wacker A, Rondrigues SA, Anfertvev V, Vaks V (2017) Theo-ry and measurements of harmonic generation in semiconductor superlattices with applications in the 100 GHz to 1 THz range. Phys Rev B 96:045306

    Article  ADS  Google Scholar 

  29. Pereira MF, Anfertev V, Zubelli JP, Vaks V (2017) Terahertz generation by gigahertz multiplication in su-perlattices. J Nanophoton 11(4):046022

    Article  Google Scholar 

  30. Apostolakis A, Pereira MF (2019) Controlling the harmonic conversion efficiency in semiconductor superlattices by in-terface roughness design. AIP Adv 9:015022

    Article  ADS  Google Scholar 

  31. Apostolakis A, Pereira MF (2019) Numerical studies of superlattice multipliers performance. Quantum Sens Nano Electron Photon XVI:109262

    Google Scholar 

  32. Apostolakis A, Pereira MF (2019) Potential and limits of superlattice multipliers coupled to different input power sources. J Nanophoton 13:036017

    Article  Google Scholar 

  33. Winge DO, Franckié M, Verdozzi C, Wacker A (2016) Simple electron-electron scattering in non-equilibrium Green’s function simulations. J Phys Conf Ser 696:012013

    Article  Google Scholar 

  34. Pereira MF, Shulika O (2014) Terahertz and mid infrared radiation: detection of explosives and CBRN (using te-rahertz). NATO science for peace and security series-B: physics and biophysics. Springer, Dordrecht

    Google Scholar 

  35. Pereira MF, Shulika O (2011) Terahertz and mid infrared radiation: generation, detection and applications, NATO science for peace and security series-B: physics and biophysics. Springer, Dordrecht

    Google Scholar 

  36. Apostolakis A, Pereira MF (2020) Superlattice nonlinearities for gigahertz-terahertz generation in harmonic multipliers. Nanophotonics 9(12):3941–3952. https://doi.org/10.1515/nanoph-2020-0155

    Article  Google Scholar 

  37. Pereira MF, Anfertev V, Shevchenko Y, Vaks V (2020) Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci Rep 10:15950

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This research is partially supported by TUBITAK (Scientific and Technical Research Council of Turkey) project number 114F091. We would like to thank Research and Application Center for Quantum Technologies (RACQUT) of IZTECH for infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutfi Ozyuzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demirhan, Y., Turkoglu, F., Altan, H., Sabah, C., Ozyuzer, L. (2021). THz Sources and Detectors Fabricated from High Temperature Superconductors. In: Pereira, M.F., Apostolakis, A. (eds) Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2082-1_12

Download citation

Publish with us

Policies and ethics