Skip to main content

Development and Bioengineering of Lung Regeneration

  • Chapter
  • First Online:
Organ Regeneration Based on Developmental Biology

Abstract

The limited ability of the lung to respond to devastating degenerative disease entities provides the impetus to develop new cell-based restorative therapies. Approaches to meet this need could include either production of stem/progenitor cells for delivery to the damaged native lung to regenerate damaged tissue or engineering of a de novo transplantable organ. In either case, an understanding of normal lung development provides a road map for directing pluripotent stem cells (PSCs) to differentiate to lung epithelium in vitro. Lung epithelium is derived from the endodermal germ layer, which in turn is formed during gastrulation as cells migrate through the primitive streak. Through precisely coordinated temporospatial exposure to key agonists and antagonists of the WNT, FGF, BMP, and RA pathways, a subset of definitive endoderm cells are induced to express Nkx2–1, the earliest known marker of primordial lung progenitor cells, before further differentiation to mature cell types comprising the proximal and distal lung compartments. Novel culture systems, such as decellularized lung scaffolds and in vitro organoids, offer unprecedented opportunities for achieving multilineage differentiation and tissue-like structure formation together with functional evaluation of PSC-derived lung progenitors. Combined with advances in our ability to model lung development in vitro with human PSCs, emerging bioengineering techniques are rapidly transforming the field and are likely both to further our understanding of normal development and to facilitate therapeutic applications of these in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. In: Yarmush ML, Duncan JS, Gray ML (eds) Annual review of biomedical engineering, vol 13. Annu Rev, Palo Alto, pp 27–53

    Google Scholar 

  • Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BLM (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123(7):3025–3036. doi:10.1172/jci68782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilodeau M, Shojaie S, Ackerley C, Post M, Rossant J (2014) Identification of a proximal progenitor population from murine fetal lungs with clonogenic and multilineage differentiation potential. Stem Cell Rep 3(4):634–649. doi:10.1016/j.stemcr.2014.07.010

    Article  CAS  Google Scholar 

  • Bissell MJ, Hall HG, Parry G (1982) How does the extracellular-matrix direct gene-expression. J Theor Biol 99(1):31–68

    Article  CAS  PubMed  Google Scholar 

  • Booth AJ, Hadley R, Cornett AM, Dreffs AA, Matthes SA, Tsui JL, Weiss K, Horowitz JC, Fiore VF, Barker TH, Moore BB, Martinez FJ, Niklason LE, White ES (2012) Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med 186(9):866–876. doi:10.1164/rccm.201204-0754OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso WV, Kotton DN (2008) Specification and patterning of the respiratory system stem book. The Stem Cell Research Community. Harvard Stem Cell Institute, Cambridge, MA

    Google Scholar 

  • Cardoso WV, Lu JN (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133(9):1611–1624

    Article  CAS  PubMed  Google Scholar 

  • Chapman HA, Li XP, Alexander JP, Brumwel A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH (2011) Integrin alpha 6 beta 4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest 121(7):2855–2862. doi:10.1172/jci57673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Desai TJ, Qian J, Niederreither K, Lu JN, Cardoso WV (2007) Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development 134(16):2969–2979. doi:10.1242/dev.006221

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Cao YX, Qian J, Shao FZ, Niederreither K, Cardoso WV (2010) A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest 120(6):2040–2048. doi:10.1172/jci40253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HY, Matsumoto K, Brockway BL, Rackley CR, Liang JR, Lee JH, Jiang DH, Noble PW, Randell SH, Kim CF, Stripp BR (2012) Airway epithelial progenitors are region specific and show differential responses to bleomycin-induced lung injury. Stem Cells 30(9):1948–1960. doi:10.1002/stem.1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christodoulou C, Longmire TA, Shen SS, Bourdon A, Sommer CA, Gadue P, Spira A, Gouon-Evans V, Murphy GJ, Mostoslavsky G, Kotton DN (2011) Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes. J Clin Invest 121(6):2313–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. doi:10.1016/j.cell.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  • Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16(8):2565–2580. doi:10.1089/ten.tea.2009.0730

    Article  CAS  PubMed  Google Scholar 

  • Daly AB, Wallis JM, Borg ZD, Bonvillain RW, Deng B, Ballif BA, Jaworski DM, Allen GB, Weiss DJ (2012) Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A 18(1–2):1–16. doi:10.1089/ten.tea.2011.0301

    Article  CAS  PubMed  Google Scholar 

  • D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23(12):1534–1541

    Article  PubMed  Google Scholar 

  • Desai TJ, Malpel S, Flentke GR, Smith SM, Cardoso WV (2004) Retinoic acid selectively regulates Fgf10 expression and maintains cell identity in the prospective lung field of the developing foregut. Dev Biol 273(2):402–415. doi:10.1016/j.ydbio.2004.04.039

    Article  CAS  PubMed  Google Scholar 

  • Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X (2011) Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 138(5):971–981. doi:10.1242/dev.053694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dye BR, Hill DR, Ferguson MAH, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR (2015) In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4:25. doi:10.7554/eLife.05098

    Article  Google Scholar 

  • Firth AL, Dargitz CT, Qualls SJ, Menon T, Wright R, Singer O, Gage FH, Khanna A, Verma IM (2014) Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci USA 111(17):E1723–E1730. doi:10.1073/pnas.1403470111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadue P, Huber TL, Nostro MC, Kattman S, Keller GM (2005) Germ layer induction from embryonic stem cells. Exp Hematol 33(9):955–964. doi:10.1016/j.exphem.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  • Gadue P, Huber TL, Paddison PJ, Keller GM (2006) Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci USA 103(45):16806–16811. doi:10.1073/pnas.0603916103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui LQ, White ES, Niklason LE (2013) Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 123(11):4950–4962. doi:10.1172/jci68793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilpin SE, Guyette JP, Gonzalez G, Ren X, Asara JM, Mathisen DJ, Vacanti JP, Ott HC (2014a) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308. doi:10.1016/j.healun.2013.10.030

    Article  PubMed  Google Scholar 

  • Gilpin SE, Ren X, Okamoto T, Guyette JP, Mou HM, Rajagopal J, Mathisen DJ, Vacanti JP, Ott HC (2014b) Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix. Ann Thorac Surg 98(5):1721–1729. doi:10.1016/j.athoracsur.2014.05.080

    Article  PubMed  PubMed Central  Google Scholar 

  • Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE (2009) Wnt2/2b and beta-Catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17(2):290–298. doi:10.1016/j.devcel.2009.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh S, Ito I, Nagasaki T, Yamamoto Y, Konishi S, Korogi Y, Matsumoto H, Muro S, Hirai T, Funato M, Mae S, Toyoda T, Sato-Otsubo A, Ogawa S, Osafune K, Mishima M (2014) Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep 3(3):394–403. doi:10.1016/j.stemcr.2014.07.005

    Article  CAS  Google Scholar 

  • Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, Keller G (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24(11):1402–1411. doi:10.1038/nbt1258

    Article  CAS  PubMed  Google Scholar 

  • Green MD, Chen A, Nostro MC, d’Souza SL, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck HW (2011) Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 29(3):267–U153. doi:10.1038/nbt.1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris-Johnson KS, Domyan ET, Vezina CM, Sun X (2009) beta-Catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci USA 106(38):16287–16292. doi:10.1073/pnas.0902274106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hook GER, Brody AR, Cameron GS, Jetten AM, Gilmore LB, Nettesheim P (1987) Repopulation of denuded tracheas by Clara cells isolated from the lungs of rabbits. Exp Lung Res 12(4):311–329. doi:10.3109/01902148709062843

    Article  CAS  PubMed  Google Scholar 

  • Huang SXL, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW (2014) Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 32(1):84. doi:10.1038/nbt.2754

    Article  CAS  PubMed  Google Scholar 

  • Ikonomou L, Kotton DN (2015) Derivation of endodermal progenitors from pluripotent stem cells. J Cell Physiol 230(2):246–258. doi:10.1002/jcp.24771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inayama Y, Hook GER, Brody AR, Cameron GS, Jetten AM, Gilmore LB, Gray T, Nettesheim P (1988) The differentiation potential of tracheal basal cells. Lab Investig 58(6):706–717

    CAS  PubMed  Google Scholar 

  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312. doi:10.1038/nbt.3413

    Article  CAS  PubMed  Google Scholar 

  • Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835. doi:10.1016/j.cell.2005.03.032

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Hara Y, Pineau T, FernandezSalguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10(1):60–69

    Article  CAS  PubMed  Google Scholar 

  • Konishi S, Gotoh S, Tateishi K, Yamamoto Y, Korogi Y, Nagasaki T, Matsumoto H, Muro S, Hirai T, Ito I, Tsukita S, Mishima M (2016) Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep 6(1):18–25. doi:10.1016/j.stemcr.2015.11.010

    Article  CAS  Google Scholar 

  • Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, Fehling HJ, Keller G (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131(7):1651–1662. doi:10.1242/dev.01044

    Article  CAS  PubMed  Google Scholar 

  • Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345(6194):10. doi:10.1126/science.1247125

    Article  Google Scholar 

  • Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373. doi:10.1038/nature12517

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, Wagers AJ, Tseng YH, Ryeom S, Kim CF (2014) Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-Thrombospondin-1 axis. Cell 156(3):440–455. doi:10.1016/j.cell.2013.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li QY, Uygun BE, Geerts S, Ozer S, Scalf M, Gilpin SE, Ott HC, Yarmush ML, Smith LM, Welham NV, Frey BL (2016) Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials 75:37–46. doi:10.1016/j.biomaterials.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  • Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20(1):58–61

    Article  CAS  PubMed  Google Scholar 

  • Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao YX, Jean JC, Kwok LW, Mou HM, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck HW, Ramirez MI, Kotton DN (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10(4):398–411. doi:10.1016/j.stem.2012.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQualter JL, Yuen K, Williams B, Bertoncello I (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA 107(4):1414–1419. doi:10.1073/pnas.0909207107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453(7196):745–7U1. doi:10.1038/nature07005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minoo P, Su GS, Drum H, Bringas P, Kimura S (1999) Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev Biol 209(1):60–71

    Article  CAS  PubMed  Google Scholar 

  • Morrisey EE, Hogan BLM (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18(1):8–23. doi:10.1016/j.devcel.2009.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC (1998) Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20(1):54–57

    Article  CAS  PubMed  Google Scholar 

  • Mou HM, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C, Rajagopal J (2012) Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 10(4):385–397. doi:10.1016/j.stem.2012.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO (2012) The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 11(4):18. doi:10.1074/mcp.M111.014647

    Article  Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221. doi:10.1038/nm1684

    Article  CAS  PubMed  Google Scholar 

  • Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–U131. doi:10.1038/nm.2193

    Article  CAS  PubMed  Google Scholar 

  • Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8(19):1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Petersen TH, Calle EA, Zhao LP, Lee EJ, Gui LQ, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541. doi:10.1126/science.1189345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A (2010) Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 16(8):2581–2591. doi:10.1089/ten.tea.2009.0659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randell SH, Comment CE, Ramaekers FCS, Nettesheim P (1991) Properties of rat tracheal epithelial-cells separated based on expression of cell-surface alpha-galactosyl end groups. Am J Respir Cell Mol Biol 4(6):544–554

    Article  CAS  PubMed  Google Scholar 

  • Rankin SA, Han L, McCracken KW, Kenny AP, Anglin CT, Grigg EA, Crawford CM, Wells JM, Shannon JM, Zorn AM (2016) A retinoic acid-hedgehog cascade coordinates mesoderm-inducing signals and endoderm competence during lung specification. Cell Rep 16(1):66–78. doi:10.1016/j.celrep.2016.05.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Moser PT, Gilpin SE, Okamoto T, Wu T, Tapias LF, Mercier FE, Xiong LJ, Ghawi R, Scadden DT, Mathisen DJ, Ott HC (2015) Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol 33(10):1097. doi:10.1038/nbt.3354

    Article  CAS  PubMed  Google Scholar 

  • Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BLM (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 106(31):12771–12775. doi:10.1073/pnas.0906850106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodewald HR (2008) Thymus organogenesis. Annu Rev Immunol 26:355–388. doi: 10.1146/annurev.immunol.26.021607.090408

  • Sasai Y (2013a) Cytosystems dynamics in self-organization of tissue architecture. Nature 493(7432):318–326. doi:10.1038/nature11859

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y (2013b) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530

    Article  CAS  PubMed  Google Scholar 

  • Serls AE, Doherty S, Parvatiyar P, Wells JM, Deutsch GH (2005) Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 132(1):35–47

    Article  CAS  PubMed  Google Scholar 

  • Shamis Y, Hasson E, Soroker A, Bassat E, Shimoni Y, Ziv T, Sionov RV, Mitrani E (2011) Organ-specific scaffolds for in vitro expansion, differentiation, and organization of primary lung cells. Tissue Eng Part C-Methods 17(8):861–870. doi:10.1089/ten.tec.2010.0717

    Article  CAS  PubMed  Google Scholar 

  • Shannon JM (1994) Induction of alveolar type-ii cell-differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev Biol 166(2):600–614

    Article  CAS  PubMed  Google Scholar 

  • Shannon JM, Hyatt BA (2004) Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 66:625–645. doi:10.1146/annurev.physiol.66.032102.135749

    Article  CAS  PubMed  Google Scholar 

  • Shannon JM, Gebb SA, Nielsen LD (1999) Induction of alveolar type II cell differentiation in embryonic tracheal epithelium in mesenchyme-free culture. Development 126(8):1675–1688

    CAS  PubMed  Google Scholar 

  • Shojaie S, Ermini L, Ackerley C, Wang J, Chin S, Yeganeh B, Bilodeau M, Sambi M, Rogers I, Rossant J, Bear CE, Post M (2015) Acellular lung scaffolds direct differentiation of endoderm to functional airway epithelial cells: requirement of matrix-bound HS proteoglycans. Stem Cell Rep 4(3):419–430. doi:10.1016/j.stemcr.2015.01.004

    Article  CAS  Google Scholar 

  • Sinner D, Rankin S, Lee M, Zorn AM (2004) Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development 131(13):3069–3080. doi:10.1242/dev.01176

    Article  CAS  PubMed  Google Scholar 

  • Song JJ, Ott HC (2011) Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 17(8):424–432. doi:10.1016/j.molmed.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  • Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651. doi:10.1038/nm.3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabler CT, Caires LC, Mondrinos MJ, Marcinkiewicz C, Lazarovici P, Wolfson MR, Lelkes PI (2016) Enhanced re-endothelialization of decellularized rat lungs. Tissue Eng Part C-Methods 22(5):439–450. doi:10.1089/ten.tec.2016.0012

    Article  CAS  PubMed  Google Scholar 

  • Suki B (2014) Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung. J Cell Physiol 229(9):1134–1140. doi:10.1002/jcp.24600

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro T, Wang Y, Barak LS, Bai YS, Randell SH, Hogan BLM (2014) IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci USA 111(35):E3641–E3649. doi:10.1073/pnas.1409781111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam PPL, Loebel DAF, Tanaka SS (2006) Building the mouse gastrula: signals, asymmetry and lineages. Curr Opin Genet Dev 16(4):419–425. doi:10.1016/j.gde.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Totonelli G, Maghsoudlou P, Garriboli M, Riegler J, Orlando G, Burns AJ, Sebire NJ, Smith VV, Fishman JM, Ghionzoli M, Turmaine M, Birchall MA, Atala A, Soker S, Lythgoe MF, Seifalian A, Pierro A, Eaton S, De Coppi P (2012) A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33(12):3401–3410. doi:10.1016/j.biomaterials.2012.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Totonelli G, Maghsoudlou P, Georgiades F, Garriboli M, Koshy K, Turmaine M, Ashworth M, Sebire NJ, Pierro A, Eaton S, De Coppi P (2013) Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration. Pediatr Surg Int 29(1):87–95. doi:10.1007/s00383-012-3194-3

    Article  PubMed  Google Scholar 

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–U120. doi:10.1038/nm.2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Veen VC, van der Wal MBA, van Leeuwen MCE, Ulrich MMW, Middelkoop E (2010) Biological background of dermal substitutes. Burns 36(3):305–321. doi:10.1016/j.burns.2009.07.012

    Article  PubMed  Google Scholar 

  • van Vranken BE, Romanska HM, Polak JM, Rippon HJ, Shannon JM, Bishop AE (2005) Coculture of embryonic stem cells with pulmonary mesenchyme: a microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng 11(7–8):1177–1187

    Article  PubMed  Google Scholar 

  • Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B, Tan K, Tan V, Liu FC, Looney MR, Matthay MA, Rock JR, Chapman HA (2015) Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517(7536):621–U211. doi:10.1038/nature14112

    Article  CAS  PubMed  Google Scholar 

  • Wallis JM, Borg ZD, Daly AB, Deng B, Ballif BA, Allen GB, Jaworski DM, Weiss DJ (2012) Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C-Methods 18(6):420–432. doi:10.1089/ten.tec.2011.0567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JM, Melton DA (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15:393–410

    Article  CAS  PubMed  Google Scholar 

  • Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO, Huan LJ, Ratjen F, Ellis J, Rossant J (2012) Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 30(9):876–U108. doi:10.1038/nbt.2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann B (1987) Lung organoid culture. Differentiation 36(1):86–109. doi:10.1111/j.1432-0436.1987.tb00183.x

    Article  CAS  PubMed  Google Scholar 

  • Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251. doi:10.1146/annurev.cellbio.042308.113344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Andrew A. Wilson is supported by R01DK101501 and Laertis Ikonomou by grants R01 HL111574 and R01 HL124280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laertis Ikonomou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wilson, A., Ikonomou, L. (2017). Development and Bioengineering of Lung Regeneration. In: Tsuji, T. (eds) Organ Regeneration Based on Developmental Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3768-9_13

Download citation

Publish with us

Policies and ethics