Skip to main content

Polarization Correlometry of Microscopic Images of Polycrystalline Networks Biological Layers

  • Chapter
  • First Online:
Shedding the Polarized Light on Biological Tissues

Abstract

This section presents the results of the practical application of the theoretical correlation approach for combining the polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Tuchin, L. Wang, D. Zimnjakov, Optical Polarization in Biomedical Applications (Springer, New York, USA, 2006)

    Book  Google Scholar 

  2. R. Chipman, in Polarimetry, ed. by M. Bass. Handbook of Optics: Vol I—Geometrical and Physical Optics, Polarized Light, Components and Instruments (McGraw-Hill Professional, New York, 2010), pp. 22.1–22.37

    Google Scholar 

  3. N. Ghosh, M. Wood, A. Vitkin, in Polarized Light Assessment of Complex Turbid Media Such as Biological Tissues Via Mueller Matrix Decomposition, ed. by V. Tuchin. Handbook of Photonics for Biomedical Science (CRC Press, Taylor & Francis Group, London, 2010), pp. 253–282

    Google Scholar 

  4. S. Jacques, Polarized light Imaging of Biological Tissues, in Handbook of Biomedical Optics, ed. by D. Boas, C. Pitris, N. Ramanujam (CRC Press, Boca Raton, London, New York, 2011), pp. 649–669

    Google Scholar 

  5. N. Ghosh, Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16(11), 110801 (2011)

    Article  ADS  Google Scholar 

  6. M. Swami, H. Patel, P. Gupta, Conversion of 3 × 3 Mueller matrix to 4 × 4 Mueller matrix for non-depolarizing samples. Opt. Commun. 286, 18–22 (2013)

    Article  ADS  Google Scholar 

  7. D. Layden, N. Ghosh, A. Vitkin, in Quantitative Polarimetry for Tissue Characterization and Diagnosis, ed. by R. Wang. Advanced Biophotonics: Tissue Optical Sectioning (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2013), pp. 73–108

    Google Scholar 

  8. T. Vo-Dinh, Biomedical Photonics Handbook, 3 vol. set, 2nd edn. (CRC Press, Boca Raton, 2014)

    Google Scholar 

  9. A. Vitkin, N. Ghosh, A. Martino, Tissue polarimetry, in Photonics: Scientific Foundations, Technology and Applications, 4th edn., ed. by D. Andrews (Wiley, Hoboken, New Jersey, 2015), pp. 239–321

    Chapter  Google Scholar 

  10. V. Tuchin, Tissue optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd edn. (SPIE Press, Bellingham, Washington, USA, 2007)

    Book  Google Scholar 

  11. W. Bickel, W. Bailey, Stokes vectors, Mueller matrices, and polarized scattered light. Am. J. Phys. 53(5), 468–478 (1985)

    Article  ADS  Google Scholar 

  12. A. Doronin, C. Macdonald, I. Meglinski, Propagation of coherent polarized light in turbid highly scattering medium. J. Biomed. Opt. 19(2), 025005 (2014)

    Article  ADS  Google Scholar 

  13. A. Doronin, A. Radosevich, V. Backman, I. Meglinski, Two electric field Monte Carlo models of coherent backscattering of polarized light. J. Opt. Soc. America A 31(11), 2394 (2014)

    Article  ADS  Google Scholar 

  14. A. Ushenko, V. Pishak, in Laser Polarimetry of Biological Tissue: Principles and Applications, ed. by V. Tuchin. Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics (Environmental and Material Science, 2004), pp. 93–138

    Google Scholar 

  15. E. Wolf, Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Tervo, T. Setala, A. Friberg, Degree of coherence for electromagnetic. Opt. Express 11, 1137–1143 (2003)

    Article  ADS  Google Scholar 

  17. J.M. Movilla, G. Piquero, R. Martínez-Herrero, P.M. Mejías, Parametric characterization of non-uniformly polarized. Opt. Commun. 149, 230–234 (1998)

    Article  ADS  Google Scholar 

  18. J. Ellis, A. Dogariu, Complex degree of mutual polarization. Opt. Lett. 29, 536–538 (2004)

    Article  ADS  Google Scholar 

  19. C. Mujat, A. Dogariu, Statistics of partially coherent beams: a numerical analysis. J. Opt. Soc. Am. A 21(6), 1000–1003 (2004)

    Article  ADS  Google Scholar 

  20. F. Gori, Matrix treatment for partially polarized, partially coherent beams. Opt. Lett. 23, 241–243 (1998)

    Article  ADS  Google Scholar 

  21. E. Wolf, Significance and measurability of the phase of a spatially coherent optical field. Opt. Lett. 28, 5–6 (2003)

    Article  ADS  Google Scholar 

  22. M. Mujat, A. Dogariu, Polarimetric and spectral changes in random electromagnetic fields. Opt. Lett. 28, 2153–2155 (2003)

    Article  ADS  Google Scholar 

  23. J. Ellis, A. Dogariu, S. Ponomarenko, E. Wolf, Interferometric measurement of the degree of polarization and control of the contrast of intensity fluctuations. Opt. Lett. 29, 1536–1538 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meglinski, I. et al. (2021). Polarization Correlometry of Microscopic Images of Polycrystalline Networks Biological Layers. In: Shedding the Polarized Light on Biological Tissues. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4047-4_4

Download citation

Publish with us

Policies and ethics