Skip to main content

Predicting Gene Expression Levels from Histone Modification Signals with Convolutional Recurrent Neural Networks

  • Conference paper
  • First Online:
EMBEC & NBC 2017 (EMBEC 2017, NBC 2017)

Abstract

In this paper we study how a Convolutional Recurrent Neural Network performs for predicting the gene expression levels from histone modification signals. Moreover, we consider two simplified variants of the Convolutional Recurrent Neural Network: Convolutional Neural Network and Recurrent Neural Network. The performance of the methods is evaluated with histone modification signal and gene expression data derived from Roadmap Epigenomics Mapping Consortium database, and compared against the state of the art method: the DeepChrome. It is shown that the proposed models give a statistically significant improvement over the baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karlić, R., Chung, H.-R., Lasserre, J., Vlahoviček, K.,Vingron, M.: Histone modification levels are predictive for geneexpression Proceedings of the National Academy of Sciences.2010;107:2926–2931.

    Google Scholar 

  2. Bannister, A.J., Kouzarides, T.: Regulation of chromatin by histonemodifications Cell research. 2011;21:381–395.

    Google Scholar 

  3. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks in Advances in Neural Information Processing Systems:1097–1105 2012

    Google Scholar 

  4. Szegedy C, Toshev A, Erhan D. Deep neural networks for object detection in Advances in Neural Information Processing Systems:2553–2561 2013

    Google Scholar 

  5. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:770–778 2016

    Google Scholar 

  6. Hinton, G., Deng, L., Yu, D., et al.: Deep neural networks foracoustic modeling in speech recognition: The shared views of fourresearch groups IEEE Signal Processing Magazine.2012;29:82–97.

    Google Scholar 

  7. Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on:6645–6649IEEE 2013

    Google Scholar 

  8. Sainath T N, Vinyals O, Senior A, Sak H. Convolutional, long short-term memory, fully connected deep neural networks in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on:4580–4584IEEE 2015

    Google Scholar 

  9. Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks in Advances in Neural Information Processing Systems:3104–3112 2014

    Google Scholar 

  10. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predictingthe sequence specificities of DNA-and RNA-binding proteins by deeplearning Nature biotechnology. 2015;33:831–838.

    Google Scholar 

  11. Kraus, O.Z., Ba, J.L., Frey, B.J.: Classifying and segmentingmicroscopy images with deep multiple instance learning Bioinformatics. 2016;32:i52–i59.

    Google Scholar 

  12. Singh, R., Lanchantin, J., Robins, G., Qi, Y.: DeepChrome:deep-learning for predicting gene expression from histonemodifications. Bioinformatics. 2016;32:i639–i648.

    Google Scholar 

  13. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition:A convolutional neural-network approach IEEE transactions onneural networks. 1997;8:98–113.

    Google Scholar 

  14. Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences arXiv preprint arXiv:1404.2188. 2014

    Google Scholar 

  15. Funahashi, K.I., Nakamura, Y.: Approximation of dynamical systems bycontinuous time recurrent neural networks Neural networks.1993;6:801–806.

    Google Scholar 

  16. Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S. Recurrent neural network based language model. in Interspeech;2:3 2010

    Google Scholar 

  17. Kundaje, A., Meuleman, W., Ernst, J., et al.: Integrative analysisof 111 reference human epigenomes. Nature. 2015;518:317–330.

    Google Scholar 

  18. Harrow, J., Frankish, A., Gonzalez, J.M., et al.: GENCODE: thereference human genome annotation for The ENCODE Project. Genomeresearch. 2012;22:1760–1774.

    Google Scholar 

  19. Quinlan, A.R., Hall, I.M.: BEDTools: a flexible suite of utilitiesfor comparing genomic features. Bioinformatics. 2010;26:841–842.

    Google Scholar 

  20. Cheng, C., Yan, K.K., Yip, K.Y., et al.: A statistical framework formodeling gene expression using chromatin features and application tomodENCODE datasets Genome biology. 2011;12:R15.

    Google Scholar 

  21. Deng L, Platt J. Ensemble deep learning for speech recognition in Proc. Interspeech. 2014

    Google Scholar 

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neuralcomputation. 1997;9:1735–1780.

    Google Scholar 

  23. Pinheiro P H, Collobert R. Recurrent Convolutional Neural Networks for Scene Labeling. in ICML:82–90 2014

    Google Scholar 

  24. Çakır E, Parascandolo G, Heittola T, Huttunen H, Virtanen T. Convolutional recurrent neural networks for polyphonic sound event detection arXiv preprint arXiv:1702.06286. 2017

    Google Scholar 

  25. Altman N, Krzywinski M. Points of significance: P values and the search for significance Nature Methods. 2017;14:3–4

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Roadmap Epigenomics Mapping Consortium (REMC) for sharing the database. We would also like to thank the powerful bedtools for genome arithmetic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyu Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Zhu, L., Kesseli, J., Nykter, M., Huttunen, H. (2018). Predicting Gene Expression Levels from Histone Modification Signals with Convolutional Recurrent Neural Networks. In: Eskola, H., Väisänen, O., Viik, J., Hyttinen, J. (eds) EMBEC & NBC 2017. EMBEC NBC 2017 2017. IFMBE Proceedings, vol 65. Springer, Singapore. https://doi.org/10.1007/978-981-10-5122-7_139

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5122-7_139

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5121-0

  • Online ISBN: 978-981-10-5122-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics