Skip to main content

Introduction to Temporal Network Epidemiology

  • Chapter
  • First Online:
Temporal Network Epidemiology

Part of the book series: Theoretical Biology ((THBIO))

Abstract

In this introductory chapter, we start by briefly summarising temporal and adaptive networks, and epidemic process models frequently used in this volume. Then, we introduce a couple of what we think are key studies in the field, which are fundamental for various chapters in this volume. Finally, we give an overview of each chapter and discuss future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 4, 478–489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge, UK (2008)

    Book  MATH  Google Scholar 

  3. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92, 178701 (2004)

    Article  Google Scholar 

  4. Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282 (2007)

    Article  Google Scholar 

  5. Dietz, K.: On the transmission dynamics of HIV. Math. Biosci. 90, 397–414 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing designs for pandemic influenza. Emerg. Infect. Dis. 12, 1671–1681 (2006)

    Article  Google Scholar 

  7. Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008)

    Article  Google Scholar 

  8. Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006)

    Article  Google Scholar 

  9. Gross, T., Sayama, H. (eds.): Adaptive Networks. Springer, Berlin (2009)

    MATH  Google Scholar 

  10. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Holme, P.: Model versions and fast algorithms for network epidemiology. J. Logist. Eng. Univ. 30, 1–7 (2014)

    Google Scholar 

  12. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015)

    Article  Google Scholar 

  13. Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)

    Article  Google Scholar 

  14. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)

    Article  Google Scholar 

  15. Holme, P., Saramäki, J.: Temporal Networks. Springer, Berlin (2013)

    Book  Google Scholar 

  16. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102(R) (2011)

    Google Scholar 

  17. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005)

    Article  Google Scholar 

  18. Kelso, J.K., Milne, G.J., Kelly, H.: Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza. BMC Public Health 9, 117 (2009)

    Article  Google Scholar 

  19. Kretzschmar, M., Morris, M.: Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 133, 165–195 (1996)

    Article  MATH  Google Scholar 

  20. Lloyd, A.L.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Pop. Biol. 60, 59–71 (2001)

    Article  Google Scholar 

  21. Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep. 5, 6 (2013)

    Google Scholar 

  22. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, Singapore (2016)

    Book  MATH  Google Scholar 

  23. Newman, M.E.J.: Networks–An Introduction. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  24. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  25. Reluga, T.C.: Game theory of social distancing in response to an epidemic. PLoS Comput. Biol. 6, e1000793 (2010)

    Article  MathSciNet  Google Scholar 

  26. Rocha, L.E.C., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7, e1001109 (2011)

    Article  Google Scholar 

  27. Rocha, L.E.C., Masuda, N.: Individual-based approach to epidemic processes on arbitrary dynamic contact networks. Sci. Rep. 6, 31456 (2016)

    Article  Google Scholar 

  28. Sayama, H., Pestov, I., Schmidt, J., Bush, B.J., Wong, C., Yamanoi, J., Gross, T.: Modeling complex systems with adaptive networks. Comput. Math. Appl. 65, 1645–1664 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sharp, P.M., Hahn, B.H.: Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011)

    Article  Google Scholar 

  30. Starnini, M., Baronchelli, A., Pastor-Satorras, R.: Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110, 168701 (2013)

    Article  Google Scholar 

  31. Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5, 021005 (2015)

    Google Scholar 

  32. Vestergaard, C.L., Génois, M.: Temporal Gillespie algorithm: fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol. 11, e1004579 (2015)

    Article  Google Scholar 

  33. Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B 274, 2925–2933 (2007)

    Article  Google Scholar 

  34. Volz, E., Meyers, L.A.: Epidemic thresholds in dynamic contact networks. J. R. Soc. Interface 6, 233–241 (2009)

    Article  Google Scholar 

  35. Watts, C.H., May, R.M.: The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math. Biosci. 108, 89–104 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

NM acknowledges the support provided through JST, ERATO, Kawarabayashi Large Graph Project and JST, CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Masuda, N., Holme, P. (2017). Introduction to Temporal Network Epidemiology. In: Masuda, N., Holme, P. (eds) Temporal Network Epidemiology. Theoretical Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5287-3_1

Download citation

Publish with us

Policies and ethics