Skip to main content

High-Capacity Downlink for Millimeter Wave Communication Network Architecture

  • Conference paper
  • First Online:
Emerging Technologies in Data Mining and Information Security

Abstract

With the explosive growth in the demand for higher bandwidth, more new technologies are emerging. Frequencies 10 GHz will be fully occupied within few years by communication channel. The millimeter-wave (mm-wave) frequency band that ranges from 30 to 300 GHz is a new frontier for fifth generation (5G) mobile communication. The mm-wave frequencies suffer from very high attenuation in free space and through objects that limit the signal propagation range. In this paper, the downlink of 5G network architecture has been proposed in order to increase the data throughputs and coverage. The free space channel has been characterized by the Rayleigh fading channel. Orthogonal frequency-division multiple access (OFDMA) have been utilized in the downlink. The proposed network uses 16-quadrature amplitude modulation (QAM) which will ensure greater data throughputs above 5 Gbps. Also, using adaptive beam-forming antennas, the network is expected to provide increased coverage of about 2 km.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work!. IEEE Access 1, 335–349 (2013). https://doi.org/10.1109/ACCESS.2013.2260813

    Article  Google Scholar 

  2. Lockie, D., Peck, D.: High-data-rate millimeter-wave radios. IEEE Microw. Mag. 10(5), 75–83 (2009). https://doi.org/10.1109/MMM.2009.932834

    Article  Google Scholar 

  3. Rappaport, T.S., Murdock, J.N., Gutierrez, F.: State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1390–1436 (2011). https://doi.org/10.1109/JPROC.2011.2143650

    Article  Google Scholar 

  4. Khan, F., Pi, Z.: mmWave mobile broadband (MMB): unleashing the 3–300 GHz spectrum. In: Proceeding of 34th IEEE Sarnoff Symposium, pp. 1–6 (2011) https://doi.org/10.1109/SARNOF.2011.5876482

  5. Pi, Z., Khan, F.: An introduction to millimeter wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011). https://doi.org/10.1109/MCOM.2011.5783993

    Article  Google Scholar 

  6. Pietraski, P., Britz, D., Roy, A., Pragada, R., Charlton, G.: Millimeter wave and terahertz communications: feasibility and challenges. ZTE Commun. 10(4), 3–12 (2012)

    Google Scholar 

  7. Huang, K.C., Wang, Z.: Millimeter Wave Communication Systems. Wiley 29 (Sections 1.1–1.2) (2011). ISBN 1-118-10275-4

    Google Scholar 

  8. Rappaport, T., Gutierrez, F., Ben-Dor, E., Murdock, J.N., Qiao, Y., Tamir, J.I.: Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antennas Propag. 61(4), 1850–1859 (2013). https://doi.org/10.1109/TAP.2012.2235056

    Article  Google Scholar 

  9. Myung, H.G.: Introduction to single carrier FDMA. In: 15th European Signal Proceeding Conference (EUSIPCO 2007), pp. 2144–2148. IEEE, New york (2007)

    Google Scholar 

  10. Wang, P., Li, Y., Yuan, X., Song, L., Vucetic, B.: Tens of gigabits wireless communications over E-Band LoS MIMO channels with uniform linear antenna arrays. IEEE Trans. Wirel. Commun. 13(7), 3791–3805 (2014). https://doi.org/10.1109/TWC.2014.2318053

    Article  Google Scholar 

  11. Guo, Y.J., Liu, D., Bird, N.C.: Guest editorial for the special issue on antennas and propagation aspects of 60–90 GHz wireless communications. IEEE Trans. Antennas Propag. 57(10), 2817–2819 (2009). https://doi.org/10.1109/TAP.2009.2032587

    Article  Google Scholar 

  12. Zhao, X., Kivinen, J., Vainikainen, P., Skog, K.: Propagation characteristics for wideband outdoor mobile communications at 5.3 GHz. IEEE J. Sel. Areas Commun. 20(3), 507–514 (2002). https://doi.org/10.1109/49.995509

    Article  Google Scholar 

  13. Rajagopal, S., Abu-Surra, S., Malmirchegini, M.: Channel feasibility for outdoor non-line-of-sight mmwave mobile communication. In: Proceeding of IEEE Vehicle Technology Conference (VTC Fall), pp. 1–6 (2012) https://doi.org/10.1109/VTCFall.2012.6398884

  14. Rappaport, T., Ben-Dor, E., Murdock, J.N., Qiao, Y.: 38 GHz and 60 GHz angle-dependent propagation for cellular and peer-to-peer wireless communications. In: Proceeding of IEEE International Conference on Communications (ICC), pp. 4568–4573 (2012) https://doi.org/10.1109/ICC.2012.6363891

  15. Madhow, U.: Networking at 60 GHz: the emergence of multigigabit wireless. In: Proceeding 2nd International COMSNET, pp. 1–6 (2010) https://doi.org/10.1109/COMSNETS.2010.5431983

  16. Yong, S.K., Chong, C.C.: An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges. EURASIP J. Wirel. Commun. Netw. 2007(1), 78907-1-78907-10 (2007) https://doi.org/10.1155/2007/78907

  17. Federal Communication Commission: Allocation and service rules for the 71–76 GHz, 81–86 GHz and 92–95 GHz bands. FCC Memorandum Opinion and Order, FCC 03-248 (2003)

    Google Scholar 

  18. Chimeh, J.D.: 5G Mobile communications: a mandatory wireless infrastructure for Big data. In: Proceeding of International Conference on Advances in Computing, Electronics and Electrical Technology (CEET), vol. 2015 (2015) https://doi.org/10.15224/978-1-63248-056-9-29

  19. Ancora, A., Bona, C., Slock, D.T.: Down-sampled impulse response least-squares channel estimation for LTE OFDMA. In: IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP, vol. 3, pp. 293–296 (2007) https://doi.org/10.1109/ICASSP.2007.366530

  20. Roddy, D.: Satellite Communication. 4/e, McGraw-Hill, New York (2006). ISBN 0-07-146298-8

    Google Scholar 

  21. CCIR Doc. Rep. 719-3.: Attenuation by Atmospheric Gases. ITU (1990)

    Google Scholar 

  22. Flock, W.L.: Propagation Effects on Satellite Systems at Frequencies Below 10 GHz: A handbook for satellite systems design. NASA Doc.1108(02) (Chaps. 3, 4 and 9 passim) (1987)

    Google Scholar 

  23. Lovsz, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979). https://doi.org/10.1109/TIT.1979.1055985

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Al-Mamun Bulbul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulbul, A.AM., Hasan, M.T., Kadir, M.I., Hossain, M.M., Nahid, A.A., Hasan, M.N. (2019). High-Capacity Downlink for Millimeter Wave Communication Network Architecture. In: Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 814. Springer, Singapore. https://doi.org/10.1007/978-981-13-1501-5_58

Download citation

Publish with us

Policies and ethics