Skip to main content

Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes—Single Giant Unilamellar Vesicle Studies—

  • Chapter
  • First Online:
Antimicrobial Peptides

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1117))

Abstract

To elucidate the mechanisms of action of antimicrobial peptides (AMPs) and to develop de novo designed peptides with activities similar to those of AMPs, it is essential to elucidate the detailed processes of AMP interactions with plasma membranes of bacterial and fungal cells and model membranes (lipid bilayers). In this mini-review, we summarize the present state of knowledge of the interactions of AMPs with lipid vesicles obtained using the single giant unilamellar vesicle (GUV) method. Currently, three modes of action of AMPs on GUVs have been defined. The elementary processes of interactions of AMPs with lipid vesicles revealed by the single GUV method, and the advantages of this technique, are described and discussed. For example, the single GUV method can be used to determine rate constants of AMP-induced pore formation or local rupture and membrane permeation of internal contents through the pore or the local rupture, the transbilayer movement of lipids, and the relationship between the location of AMPs and pore formation. Effects of membrane tension and of asymmetric lipid packing in the bilayer on AMP-induced pore formation also are described. On the basis of these data, we discuss the present state of understanding of the interaction of AMPs with lipid bilayers and future prospects for AMP studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam JM, Kobayashi T, Yamazaki M (2012) The single giant unilamellar vesicle method reveals lysenin induced pore formation in lipid membranes containing sphingomyelin. Biochemistry 51:5160–5172

    Article  CAS  Google Scholar 

  • Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  CAS  Google Scholar 

  • Bigay J, Antonny B (2012) Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 23:886–895

    Article  CAS  Google Scholar 

  • Bleicken S, Landeta O, Landajuela L, Basañez G, García-Sáez AJ (2013) Proapoptotic Bax and Bak proteins form stable protein-permeable pores of tunable size. J Biol Chem 2013(288):33241–33252

    Article  Google Scholar 

  • Evans E, Heinrich V, Ludwig F, Rawicz W (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85:2342–2350

    Article  CAS  Google Scholar 

  • Fuertes G, Garcia-Sáez A, Esteban-Martin S, Giménez D, Sánchez-Muñoz OL, Schwille P, Salgado J (2010) Pores formed by Baxα5 relax to a smaller size and keep at equilibrium. Biophys J 99:2917–2925

    Article  CAS  Google Scholar 

  • Gregory SM, Pokorny A, Almeida PFF (2009) Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys J 96:116–131

    Article  CAS  Google Scholar 

  • Hasan M, Karal MAS, Levadnyy V, Yamazaki M (2018a) Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir 34:3349–3362

    Article  CAS  Google Scholar 

  • Hasan M, Saha SK, Yamazaki M (2018b) Effect of membrane tension on transbilayer movement of lipids. J Chem Phys 148:245101

    Article  Google Scholar 

  • Hwang PM, Vogel HJ (1998) Structure-function relationships of antimicrobial peptides. Biochem Cell Biol 76:235–246

    Article  CAS  Google Scholar 

  • Islam MZ, Ariyama H, Alam JM, Yamazaki M (2014a) Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores. Biochemistry 53:386–396

    Article  CAS  Google Scholar 

  • Islam MZ, Alam JM, Tamba Y, Karal MAS, Yamazaki M (2014b) The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Phys Chem Chem Phys 16:15752–15767

    Article  CAS  Google Scholar 

  • Islam MZ, Sharmin S, Levadnyy V, Shibly SUA, Yamazaki M (2017) Effects of mechanical properties of lipid bilayers on entry of cell-penetrating peptides into single vesicles. Langmuir 33:2433–2443

    Article  CAS  Google Scholar 

  • Islam MZ, Sharmin S, Moniruzzaman M, Yamazaki M (2018) Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells. Appl Microbiol Biotechnol 102:3879–3892

    Article  CAS  Google Scholar 

  • Israelachvili JN (1992) Intermolecular & surface forces, 2nd edn. Academic, New York

    Google Scholar 

  • Karal MAS, Alam JM, Takahashi T, Levadny V, Yamazaki M (2015) Stretch-activated pore of antimicrobial peptide magainin 2. Langmuir 31:3391–3401

    Article  CAS  Google Scholar 

  • Levadny V, Tsuboi T, Belaya M, Yamazaki M (2013) Rate constant of tension-induced pore formation in lipid membranes. Langmuir 29:3848–3852

    Article  CAS  Google Scholar 

  • Lipowsky R, Sackmann E (eds) (1995) Structure and dynamics of membranes. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Ludtke SJ, He K, Heller KH, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728

    Article  CAS  Google Scholar 

  • Madani F, Lindberg S, Langel Ű, Futaki S, Gräslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

    Article  Google Scholar 

  • Matsuzaki K, Murase K, Fujii N, Miyajima K (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34:6521–6526

    Article  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368

    Article  CAS  Google Scholar 

  • Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37:11856–11863

    Article  CAS  Google Scholar 

  • McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  CAS  Google Scholar 

  • Melo MN, Ferre R, Castanho ARB (2009) Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 8:1–5

    Google Scholar 

  • Moghal MMR, Islam MZ, Sharmin S, Levadnyy V, Moniruzzaman M, Yamazaki M (2018) Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles. Chem Phys Lipids 212:120–129

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Alam JM, Dohra H, Yamazaki M (2015) Antimicrobial peptide lactoferricin B-induced rapid leakage of internal contents from single giant unilamellar vesicles. Biochemistry 54:5802–5814

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Islam MZ, Sharmin S, Dohra H, Yamazaki M (2017) Entry of a six-residue antimicrobial peptide derived from lactoferricin B into single vesicles and Escherichia coli cells without damaging their membranes. Biochemistry 56:4419–4431

    Article  CAS  Google Scholar 

  • Müller P, Schiller S, Wieprecht T, Dathe M, Herrmann A (2000) Continuous measurement of rapid transbilayer movement of a pyrene-labeled phospholipid analogue. Chem Phys Lipids 106:89–99

    Article  Google Scholar 

  • Nekhotiaeva N, Elmquist A, Rajarao GK, Hällbrink M, Langel C, Good L (2004) Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J 18:394–396

    Article  CAS  Google Scholar 

  • Propheter DC, Chara AL, Harris TA, Ruhn KA, Hooper LV (2017) Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci U S A 114:11027–11033

    Article  CAS  Google Scholar 

  • Qian S, Wang W, Yang L, Huang HW (2008) Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc Natl Acad Sci U S A 105:17379–17383

    Article  CAS  Google Scholar 

  • Rawictz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    Article  Google Scholar 

  • Sachs F (2010) Stretch-activated ion channels: what are they? Physiology 25:50–56

    Article  CAS  Google Scholar 

  • Sandre O, Moreaux L, Brochard-Wyard F (1999) Dynamics of transient pores in stretched vesicles. Proc Natl Acad Sci U S A 96:10591–10596

    Article  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268

    Article  CAS  Google Scholar 

  • Tamba Y, Yamazaki M (2005) Single giant unilamellar vesicle method reveals effect of antimicrobial peptide, magainin 2, on membrane permeability. Biochemistry 44:15823–15833

    Article  CAS  Google Scholar 

  • Tamba Y, Yamazaki M (2009) Magainin 2-induced pore formation in membrane depends on its concentration in membrane interface. J Phys Chem B 113:4846–4852

    Article  CAS  Google Scholar 

  • Tamba Y, Ohba S, Kubota M, Yoshioka H, Yoshioka H, Yamazaki M (2007) Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes. Biophys J 92:3178–3194

    Article  CAS  Google Scholar 

  • Tamba Y, Ariyama H, Levadny V, Yamazaki M (2010) Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. J Phys Chem B 114:12018–12026

    Article  CAS  Google Scholar 

  • Tanaka T, Sano R, Yamashita Y, Yamazaki M (2004) Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by lysophosphatidylcholine. Langmuir 20:9526–9534

    Article  CAS  Google Scholar 

  • Wade D, Boman A, Wahlin B, Drain CM, Andreu A, Boman HG, Merrifield RB (1990) All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A 87:4761–4765

    Article  CAS  Google Scholar 

  • Wakabayashi H, Matsumoto H, Hashimoto K, Teraguchi S, Takase M, Hayasawa H (1999) N-acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Chemother 43:1267–1269

    Article  CAS  Google Scholar 

  • Yamazaki M (2008) The single GUV method to reveal elementary processes of leakage of internal contents from liposomes induced by antimicrobial substances. Adv Planar Lipid Bilayers Liposomes 7:121–142

    Article  CAS  Google Scholar 

  • Yang LT, Weiss M, Lehrer RI, Huang HW (2000) Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J 79:2002–2009

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Yamazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan, M., Yamazaki, M. (2019). Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes—Single Giant Unilamellar Vesicle Studies—. In: Matsuzaki, K. (eds) Antimicrobial Peptides. Advances in Experimental Medicine and Biology, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-13-3588-4_3

Download citation

Publish with us

Policies and ethics