Skip to main content

Gallic Acid (GA): A Multifaceted Biomolecule Transmuting the Biotechnology Era

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Gallic acid is a naturally occurring phenolic acid that is widely distributed across the plant kingdom in various plant parts such as leaves (bearberry), roots and bark (pomegranates and gallnuts). The present chapter reviews distribution and occurrence of gallic acid in nature with emphasis on its dietary sources and biosynthesis. Another focus of the chapter relates to the approaches for making gallic acid, including extraction from plants, acidic/alkaline hydrolysis of gallotannins and enzymatic hydrolysis of hydrolyzable tannins. This chapter provides detailed information about the worldwide manufacturers of gallic acid along with various approaches for detecting and quantifying gallic acid in a wide variety of biological matrices. Apart from these, information on versatile applications, various patents on gallic acid and its ester derivatives have also been provided. The present chapter also discusses current challenges and future outlook wherein several key areas have been highlighted that require extensive research investigations to make gallic acid a real utility in the biotechnology era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi S, Daneshfar A, Hamdghadareh S, Farmany A (2011) Quantification of sub-nanomolar levels of gallic acid by adsorptive stripping voltammetry. Int J Electrochem Sci 6(10):4843–4852

    CAS  Google Scholar 

  • Aguilar CN, Gutierrez-Sanchez G (2001) Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int 7:373–382

    CAS  Google Scholar 

  • Aguilar-Zarate P, Cruz-Hernandez MA, Montanez JC, Belmares-Cerda RE, Aguilar CN (2014) Enhancement of tannase production by Lactobacillus plantarum CIR1: validation in gas-lift bioreactor. Bioprocess Biosyst Eng 37:2305–2316

    CAS  PubMed  Google Scholar 

  • Aher AN, Pal SC, Yadav SK, Patil UK, Bhattacharya S (2010) Isolation and characterization of Phytoconstituents from Casuarina equisetifolia (Casuarinaceae). Asian J Chem 22:3429–3434

    CAS  Google Scholar 

  • Al-Ghanimi AAJ (2016) Extraction and purification of Gallic acid from Eucalyptus camaldulensis leaves. J Babylon Univ/Pure Applied Sci 24:2483–2497

    Google Scholar 

  • Anderson R, Grabow G, Oosthuizen R, Theron A, Van Rensburg AJ (1980) Effects of sulfamethoxazole and trimethoprim on human neutrophil and lymphocyte functions in vitro: in vivo effects of co-trimoxazole. Antimicrob Agents Chemother 17:322–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araptisas P (2012) Hydrolyzable tannin analysis in food. Food Chem 135:1708–1717

    Google Scholar 

  • Arceusz A, Wesolowski M (2013) Quality consistency evaluation of Melissa officinalis L. commercial herbs by HPLC fingerprint and quantitation of selected phenolic acids. J Pharm Biomed Anal 83:215–220

    CAS  PubMed  Google Scholar 

  • Ayaz FA, Hayirlioglu AS, Gruz J, Novak O, Strnad M (2005) Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (Vaccinium arctostaphylos L.) fruit by HPLC-MS. J Agric Food Chem 53(21):8116–8122

    CAS  PubMed  Google Scholar 

  • Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    CAS  Google Scholar 

  • Bajpai B, Patil S (2008) A new approach to microbial production of gallic acid. Braz J Microbiol 39:708–711

    PubMed  PubMed Central  Google Scholar 

  • Balan T, Sani MHM, Ahmad SHM, Suppaiah V, Mohtarrudin N, Zakiria ZA (2015) Antioxidant and anti-inflammatory activities contribute to the prophylactic effect of semi-purified fractions obtained from the crude methanol extract of Muntingia calabura leaves against gastric ulceration in rats. J Ethnopharmacol 164:1–15

    CAS  PubMed  Google Scholar 

  • Banerjee R, Mukherjee G (2004) Process for the preparation of gallic acid by co-culture US20040253694

    Google Scholar 

  • Banerjee D, Mondal KC, Pati BR (2001) Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF 9. J Basic Microbiol 41:313–318

    CAS  PubMed  Google Scholar 

  • Banerjee D, Mondal KC, Pati BR (2007) Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation. Acta Microbiol Immunol Hung 54(2):159–166

    CAS  PubMed  Google Scholar 

  • Battestin V, Matsuda LK, Macedo GA (2004) Fontes e aplica¸ coes de taninos e tanases em alimentos. Alim Nutri Araraquara 15:63–72

    CAS  Google Scholar 

  • Belmares R, Contreras-Esquivel JC, Rodriguez-Herrera R, Coronel AR, Aguilar CN (2004) Microbial production of Tannase: an enzyme with potential use in food industry. Lebensm-Wiss Technol 37:857–854

    CAS  Google Scholar 

  • Beniwal V, Chhokar V, Singh N, Sharma J (2010) Optimization of process parameters for the production of tannase and gallic acid by Enterobacter cloacae MTCC 9125. J Am Sci 6(8):389–397

    Google Scholar 

  • Beniwal V, Kumar A, Goel G, Chhokar V (2013) A novel low molecular weight acido-thermophilic tannase from Enterobacter cloacae MTCC 9125. Biocatal Agric Biotechnol 2:132–137

    Google Scholar 

  • Bjork JA, Philip JB (1998) Gallic acid as a laser direct thermal developer, WO1998052100

    Google Scholar 

  • Braz R, Wolf LG, Lopes GC, Mello JCP (2012) Quality control and TLC profile data on selected plant species commonly found in the Brazilian market. Braz J Pharmacogn 22:1111–1118

    CAS  Google Scholar 

  • Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci F 10(4):221–247

    CAS  Google Scholar 

  • Candar AK, Reetz I, Yonca Z, Herrero P, Jose J (2002) Use of gallic acid for stabilising chrome-iii against oxidation in chrome-tanned leather, WO2002000941

    Google Scholar 

  • Cartoni G, Coccioli F, Jasionowska R (1996) Capillary electrophoretic separation of phenolic acids. J Chromatogr A 709:209–214

    Google Scholar 

  • Chandra RP, Lehtonen LK, Ragauskas AJ (2004) Modification of high lignin content Kraft pulps with laccase to improve paper strength properties, laccase treatment in the presence of gallic acid. Biotechnol Prog 20:255–261

    CAS  PubMed  Google Scholar 

  • Chen Y, Luo Y (2011) Oxidation stability of biodiesel derived from free fatty acids associated with kinetics of antioxidants. Fuel Pro Technol 92:1387–1393

    CAS  Google Scholar 

  • Chen X, Zhang L, Wan J, Liang B, Xie Y (2010) Simultaneous isolation and purification of gallic acid and brevifolincarboxylic acid from Polygonum capitatum by high-speed counter-current chromatography. China J Chinese Mater Med 35(15):1957–1960

    CAS  Google Scholar 

  • Chen H, Ma CY, Chen X, Geng Y, Yang C, Jiang HZ, Wang X (2014) The effect of rhein and gallic acid on the content of IL10, IL-1β and TNF-α in serum of rats with endotoxemia. J Chem Pharm Res 6(10):296–299

    Google Scholar 

  • Cho YS, Kim SK, Ahn CB, Je JY (2011) Inhibition of acetylcholinesterase by Gallic acid-grafted-chitosans. Carbo Poly 84:690–693

    CAS  Google Scholar 

  • Choubey S, Varughese LR, Kumar V, Beniwal V (2015) Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharma Patent Anal 4(4):305–315

    CAS  Google Scholar 

  • Choubey S, Goyal S, Varughese LR, Kumar V, Sharma AK, Beniwal V (2018) Probing gallic acid for its broad spectrum applications. Mini-Rev Medi Chem 18:1283–1293

    CAS  Google Scholar 

  • Damiani E, Bacchetti T, Padella L, Tiano L, Carloni P (2014) Antioxidant activity of different white teas: comparison of hot and cold tea infusions. J Food Composition and Anal 33:59–66

    CAS  Google Scholar 

  • Dandekar A, Muir RM (2005) Plants transformed for elevated levels of gallic acid and methods of producing said plants, WO2005068625

    Google Scholar 

  • Deschamps AM, Otuk G, Lebault JM (1983) Production of tannase and degradation of chestnut tannins by bacteria. J Ferment Technol 61:55–59

    CAS  Google Scholar 

  • Dewick PM, Haslam E (1968) Observations on the biosynthesis of gallic acid and caffeic acid. Chem Commun (Camb) 12:673–675

    Google Scholar 

  • Dewick PM, Haslam E (1969) Phenol biosynthesis in higher plants. Gallic acid. Biochem J 113:537–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhiman S, Mukherjee G, Singh AK (2018) Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review. Int Microbiolology:1–21. https://doi.org/10.1007/s10123-018-0027-9

  • Dhralwal K, Shinde VM, Biradar YS, Mahadik KR (2008) Simultaneous quantification of Bergenia, Catechin, and Gallic acid from Bergenia ciliata and Bergenia ligulata by using thin-layer chromatography. J Food Compos Anal 21:495–500

    Google Scholar 

  • El-Basyouni SZ, Chen D, Ibrahim RK, Neish AC, Towers GHN (1964) The biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3:485–492

    CAS  Google Scholar 

  • El-Fouly MZ, El Awamry Z, Shahin Azza AM, El-Bialy HA, Narem E, El Saeed GE (2012) Gallic acid formation from gallotannins rich agricultural wastes using Aspergillus niger AUMC4301or its tannase enzyme. Ar J Nucl Sci Appl 45(2):489–496

    Google Scholar 

  • Entessar HA, Mosawe A, Iman I, Saadi A (2012) The extraction and purification of Gallic acid from the pomegranate rind. Al-Mustansiriyah J Sci 23(6):53–60

    Google Scholar 

  • Ferk F, Chakraborty A, Jager W, Kundi M, Bichler J, Misík M, Wagner K, Grasl-Kraupp B, Sagmeister S, Haidinger G, Hoelzl C, Nersesyan A, Dusinska M, Simic T, Knasmüller S (2011) Potent protection of gallic acid against DNA oxidation: results of human and animal experiments. Mutat Res 715:61–71

    CAS  PubMed  Google Scholar 

  • Fernandes FHA, Salgado HRN (2016) Gallic acid: review of the methods of determination and quantification. Critical Rev Analy Chem 46(3):257–265. https://doi.org/10.1080/10408347.2015.1095064

    Article  CAS  Google Scholar 

  • Fischer E (1914) Synthesis of Depsides, lichen-substances and tannins. J Am Chem Soc 36:1170–1201

    CAS  Google Scholar 

  • Frias CF, Gramacho SA, Pinero M (2014) Cromatografia gasosa-espectrometria de massas e derivatiza¸ cao assistida por microondas na identifica¸ cao de isomeros de glicose: Uma pratica para o ensino avan¸cado em analise e caracteriza¸ cao de compostos organicos. Quım Nova 37:176–180

    CAS  Google Scholar 

  • Frost JW (2001) Biocatalytic synthesis of galloid organics, WO2001071020

    Google Scholar 

  • Gali HU, Perchellet EM, Perchellet JP (1991) Inhibition of tumor promoter-induced ornithine decarboxylase activity by tannic acid and other polyphenols in mouse epidermis in vivo. Cancer Res 51:2820–2825

    CAS  PubMed  Google Scholar 

  • Genwali GR, Acharya PP, Rajbhandari M (2013) Isolation of Gallic acid and estimation of Total phenolic content in some medicinal plants and their antioxidant activity. Nepal J Sci Technol 14(1):95–102

    Google Scholar 

  • Goel G, Kumar A, Beniwal V, Raghav M, Puniya AK, Singh K (2011) Degradation of tannic acid and purification and characterization of tannase from Enterococcus faecalis. Int Biodeterior Biodegrad 65(7):1061–1065

    CAS  Google Scholar 

  • Gonzalez-Abuin N, Martínez-Micaelo N, Margalef M, Blay M, Arola-Arnal A, Muguerza B, Ardevol A, Pinent M (2014) A grape seed extract increases active glucagon-like peptide-1 levels after an oral glucose load in rats. Food Funct 5(9):2357–2364. https://doi.org/10.1039/c4fo00447g

    Article  CAS  PubMed  Google Scholar 

  • Gotti R (2011) Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants. J Pharm Biomed Anal 55:75–801

    Google Scholar 

  • Grabber JH, Ralph J (2012) Incorporation of Flavan-3-ols and Gallic acid derivatives into lignin to improve biomass utilization, US20120094330

    Google Scholar 

  • Greene SL, Huang Y, Huang L, Weart IF, Yang SP, Malik S, Johnson RB (2006) Antimicrobial compositions comprising a natural agent selected from gallic acid, eucalyptol, naringin, a jasmonic acid compound and any combination thereof, WO2E006068665

    Google Scholar 

  • Greenway FL, Liu Z, Woltering EA (2007) Angiogenic agents from plant extracts, gallic acid, and derivatives, US20070031332

    Google Scholar 

  • Grundhoefer P, Niemetz R, Schilling G, Gross GG (2001) Biosynthesis and subcellular distribution of hydrolyzable tannins. Phytochemistry 57:915–927

    Google Scholar 

  • Guo ZJ, Sun QS, Long LH, Bu XQ (2007) Studies on the methods of extract and determination of total tannins and gallic acids of the root of Euphorbia hylonoma. J Chinese Medi Mater 30(11):1398–1401

    CAS  Google Scholar 

  • Haslam E (1986) Secondary metabolism-fact and fiction. Nat Prod Rep 3:217–249

    CAS  Google Scholar 

  • Haslam E (1998) Polyphenols- structure and biosynthesis. In: Haslam E (ed) Practical polyphenolics: from structure to molecular recognition and physiological action, 1st edn. Cambridge University Press, New York, pp 51–83

    Google Scholar 

  • He X, Li J, Zhao W, Liu R, Zhang L, Kong X (2015) Chemical fingerprint analysis for quality control and identification of Ziyang green tea by HPLC. Food Chem 171:405–411

    CAS  PubMed  Google Scholar 

  • Hsu CL, Yen GC (2007) Effect of gallic acid on high fat diet induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br J Nutr 98:727–735

    CAS  PubMed  Google Scholar 

  • Htay HH, Tsubouchi R, Haneda M, Murakami K, Yoshino M (2002) Induction of apoptosis of HL60 cells by gallic acid derivatives. Biomed Res 23:127–134

    CAS  Google Scholar 

  • Huang HL, Lin CC, Jeng KCG, Yao PW, Chuang LT, Kuo SL, Hou CW (2012) Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus. J Agri Food Chem 60:2328–2336

    CAS  Google Scholar 

  • Ishikura N, Hayashida S, Tazaki K (1984) Biosynthesis of gallic and ellagic acids with14C-labeled compounds in Acer and Rhus leaves. The Botanical Magzine Tokyo 97:355–367

    CAS  Google Scholar 

  • Jackson JK, Zhao J, Wong W, Burt HM (2010) The inhibition of collagenase induced degradation of collagen by the galloyl-containing polyphenols tannic acid, epigallocatechin gallate and epicatechin gallate. J Mater Sci Mater Med 21:1435–1443

    CAS  PubMed  Google Scholar 

  • Jeon J, Kim E, Murugesan K, Park H, Kim Y, Kwon J, Kim W, Lee J, Chang Y (2010) Laccase-catalysed polymeric dye synthesis from plant-derived phenols for potential application in hair dyeing: enzymatic colourations driven by homo- or hetero-polymer synthesis. Microbial Biotechnol 3(3):324–335

    CAS  Google Scholar 

  • Justis V, Thomas RS, Giza BK (2002) Method of inducing sweetness by gallic acid and its applications, US200220068123

    Google Scholar 

  • Kamatham S, Kumar N, Gudipalli P (2015) Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. And their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicol Rep 2:520–529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kambourakis S, Draths KM, Frost JW (2000) Synthesis of Gallic acid and Pyrogallol from glucose: replacing natural product isolation with microbial catalysis. J Am Chem So 122(37):9042–9043

    CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (1999) Microbial production of gallic acid by modified solid state fermentation. J Ind Microbiol Biotechnol 23:173–177

    CAS  Google Scholar 

  • Karamac M, Kosinska A, Pegg RB (2009) Content of gallic acid in selected plant extracts. P J Food Nutri Sci 15(1):55–58

    Google Scholar 

  • Kato N, Shiroya M, Yoshida S, Hasegawa M (1968) Biosynthesis of Gallic acid homogenate of the leaves of Pelargonium inquinans. Bot Mag Tokyo 81:506–507

    CAS  Google Scholar 

  • Ke Z, Sacripante GG, Saban M (2014) Polyester resins comprising gallic acid and derivatives thereof, US20140322641

    Google Scholar 

  • Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B (2003) New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol 77:10288–10294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Frost JW (1999) Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources. Biotechnol Pro 15:876–883

    CAS  Google Scholar 

  • Li T, Zhang X, Zhao X (2010) Powerful protective effects of gallic acid and tea polyphenols on human hepatocytes injury induced by hydrogen peroxide or carbon tetrachloride in vitro. J Med Plant Res 4(3):247–254

    Google Scholar 

  • Li D, Liu Z, Zhao W, Xi Y, Niu F (2011) A straightforward method to determine the cytocidal and cytopathic effects of the functional groups of gallic acid. Process Biochem 46(11):2210–2214

    CAS  Google Scholar 

  • Locatelli C, Filippin-Monteiro FB, Creczynski-Pasa TB (2013) Alkyl esters of gallic acid as anticancer agents: a review. Eur J Med Chem 60:233–239

    CAS  PubMed  Google Scholar 

  • Lokeshwari N (2016) Utilization of natural tannins from Anacardium occidentales testa for producing the industrially important gallic acid through submerged fermentation. W J Pharma Res 5(8):861–864

    Google Scholar 

  • Lokeswari N, Raju KJ (2007) Optimization of Gallic acid production from Terminalia Chebula by Aspergillus niger. E-J Chem 4(2):287–293

    CAS  Google Scholar 

  • Macedo GA, Matsuda LK, Battestin V (2005) Sele¸ cao de fungos produtores de tanase em resıduos vegetais ricos em taninos. Cienc Agrotec 29:833–838

    CAS  Google Scholar 

  • Mahoney N, Molyneux RJ (2004) Phytochemical inhibition of aflatoxigenicity in Aspergillus flavus by constituents of walnut (Juglans regia). J Agric Food Chem 52:1882–1889

    CAS  PubMed  Google Scholar 

  • Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M (2013) Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem 138(2–3):1028–1033

    CAS  PubMed  Google Scholar 

  • Matsuo N, Kubota S (2006) Application of gallic acid ester compound, JP2006045219A

    Google Scholar 

  • Milum KM, Cleary DE, Rzeznik MA (2013) Stable catalyst solution for electroless metallization, EP 2559786

    Google Scholar 

  • Mizushima N, Matsuda K, Sato M, Aiki Y (2007) Stabilized gallic acid derivative and external preparation composition containing the same, JP3933344B2

    Google Scholar 

  • Muir RM, Ibanez AM, Uratsu SL, Ingham ES, Leslie CA, McGranahan GH, Batra N, Goyal S, Joseph J, Jemmis ED, Dandekar AM (2011) Mechanism of Gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia). Plant Mol Biol 75(6):555–565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee G, Banerjee R (2003) Production of gallic acid. Biotechnological routes (part 1). Chim Oggi 21:59–62

    CAS  Google Scholar 

  • Mukherjee G, Banerjee R (2004) Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus. J Basic Microbiol 44:42–48

    CAS  PubMed  Google Scholar 

  • Nair GG, Nair CK (2013) Radioprotective effects of Gallic acid in mice. Biomed Res Int 2013:953079. https://doi.org/10.1155/2013/953079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Institutes of Health. PubChem. Compound Summary for CID 370. Accessed 9 June 2015 from http://pubchem.ncbi.nlm.nih.gov/com pound/Gallic_acid

  • Natsume M, Kaji M, Kono S, Oshiro A, Sawaji T, Kamekawa AI (2009) Controlling agent of hardly controllable soilborne disease by gallic acid-related material, and method for controlling hardly controllable soilborne disease by using the same, JP2009298736

    Google Scholar 

  • Nayeem N, Karvekar MD (2010) Isolation of phenolic compounds from the methanolic extract of Tectona grandis. Res J Pharma Bio Chem Sci 1(2):221–225

    CAS  Google Scholar 

  • Nayeem N, Asdaq SMB, Salem H, Ahel-Alfqy S (2016) Gallic acid: a promising Lead molecule for drug development. J App Pharm 8:213. https://doi.org/10.4172/1920-4159.1000213

    Article  CAS  Google Scholar 

  • Neo YP, Swift S, Ray S, Gizdavic-Nikolaidis M, Jin J, Perera CO (2013) Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chem 141:3192–3200

    CAS  PubMed  Google Scholar 

  • Nunes Selles AJ, Velez Castro HT, Aguero-Aguero J, Gonzalez-Gonzalez J, De Simone F, Rastrelli L (2012) Isolation and quantitative analysis of phenolic antioxidants, free sugars, and Polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. J Agric Food Chem 50:762–766

    Google Scholar 

  • Ossipov V, Salminen JP, Ossipova S, Haukioja E, Pihlaja K (2003) Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochem Syst Ecol 31:3–16

    CAS  Google Scholar 

  • Ow YY, Stupans I (2003) Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes. Curr Drug Metab 4:241–248

    CAS  PubMed  Google Scholar 

  • Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2013) Introdu¸ cao a Espectroscopia. Sao Paulo, Brazil, Cangage Learning

    Google Scholar 

  • Pawar NP, Salunkhe VR (2013) Development and validation of UV spectrophotometric method for simultaneous estimation of Rutin and Gallic acid in Hydroalcoholic extract of Triphala churna. Int J PharmTech Res 5:724–729

    CAS  Google Scholar 

  • Pawar CR, Surana SJ (2010) Optimizing conditions for gallic acid extraction from Caesalpinia decapetala wood. Pak J Pharm Sci 23:423–425

    CAS  PubMed  Google Scholar 

  • Pedroso TM, Salgado HRN (2013) Methods for qualitative analysis of Cefazolin sodium raw material and pharmaceutical product. Phys Chem 3:29–38

    Google Scholar 

  • Penteado JCP, Magalhaes D, Masini JC (2008) Experimento didatico sobre cromatografia gasosa: Uma abordagem analıtica e ambiental. Quım. Nova. 31:2190–2193

    CAS  Google Scholar 

  • Philippe B, Francois-Xavier B, Franck H (2017) Cosmetics and pharmaceutical applications of gallic acid and gallic acid derivatives, US20170112737

    Google Scholar 

  • Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37

    CAS  PubMed  Google Scholar 

  • Pourrat H, Regerat F, Pourrat A, Daniel J (1985) Production of Gallic acid from tara by a strain of Aspergillus niger. J Ferment Technol 63:401–403

    CAS  Google Scholar 

  • Pourrat H, Regerat F, Morvan P, Pourrat A (1987) Microbiological production of gallic acid. Biotechnol Lett 9:731–734

    CAS  Google Scholar 

  • Prince PSM, Kumar MR, Selvakumari CJ (2011) Effects of gallic acid on brain lipid peroxide and lipid metabolism in streptozotocin induced diabetic wistar rats. J Biochem Mol Toxicol 25(2):101–107

    Google Scholar 

  • Punithavathi VR, Prince PSM, Kumar R, Selvakumari J (2011) Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol 650:465–471

    CAS  PubMed  Google Scholar 

  • Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R (2006) Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem 54:9764–9772

    CAS  PubMed  Google Scholar 

  • Qi FH, Jing TZ, Wang ZX, Zhan YG (2009) Fungal endophytes from Acer ginnala maxim: isolation, identification and their yield of gallic acid. Lett Appl Microbiol 49:98–104

    CAS  PubMed  Google Scholar 

  • Raghuwanshi S, Dutt K, Gupta P, Misra S, Saxena RK (2011) Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis. J Biosci Bioeng 111:635–640

    CAS  PubMed  Google Scholar 

  • Ramamurthy G, Krishnamoorthy G, Sastry TP, Mandal AB (2014) Rationalized method to enhance the chromium uptake in tanning process: role of Gallic acid. Clean Techn Environ Policy 16(3):647–654

    CAS  Google Scholar 

  • Reckziegel P, Dias VT, Benvegnú D, Boufleur N, Barcelos RCS, Segat HJ, Pase CS, Santos CMM, Flores ÉMM, Burger ME (2011) Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment. Tox Let 203:74–81

    CAS  Google Scholar 

  • Regerat F, Pourrat H, Pourrat A (1989) Hydrolysis by fermentation of tannins from gall nuts. Jalca 84:323–328

    CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Google Scholar 

  • Rodriguez-Tello A, Stammler G, KOPF A, Gold RE, Klappach K (2011) Fungicidal mixtures based on gallic acid esters, WO/2011/138345A2

    Google Scholar 

  • Roshanak S, Rahimmalek M, Goli SA (2016) Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J Food Sci Technol 53:721–729

    CAS  PubMed  Google Scholar 

  • Saeed N, Khan MR, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complem Alt Med 12(1):221

    CAS  Google Scholar 

  • Saijo R (1983) Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agri Bio Chem 47:455–460

    CAS  Google Scholar 

  • Saito S, Nukui N, Iwasaki T, Nishi T (2009) Improved gallic acid synthase and method for producing gallic acid, JP2009213392A

    Google Scholar 

  • Sanchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velazquez DA (2013) The Folin–Ciocalteu assay revisited: improvement of its specificity for Total phenolic content determination. Anal Method 5:5990–5999

    CAS  Google Scholar 

  • Santos SC, Mello JCP (2003) Taninos. In: CMO S, Shenkel EP, Gosmann G, JCP M, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento, 5th edn. Porto Alegre/Florianópolis: Editora da UFRGS/Editora da UFSC, pp 615–656

    Google Scholar 

  • Sarıozlu NY, Kıvanc M (2009) Isolation of gallic acid-producing microorganisms and their use in the production of gallic acid from gall nuts and sumac. Afr J Biotechnol 8(6):1110–1115

    Google Scholar 

  • Sato K, Sasaki S, Nakanoya T (2009) Silver nanoparticle coated with gallic acid or its derivative, JP2009221505

    Google Scholar 

  • Sawa T, Nakao M, Akaike T, Ono K, Maeda H (1999) Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor promoter effect of vegetables. J Agr Food Chem 47(2):397–402

    CAS  Google Scholar 

  • Schulz H, Engelhardt UH, Wegent A, Drews HH, Lapczynski S (1999) Application of near-infrared reflectance spectroscopy to the simultaneous prediction of alkaloids and phenolic substances in green tea leaves. J Agri Food Chem 47:5064–5067

    CAS  Google Scholar 

  • Sen S, Asokkumar K, Umamaheswari M, Sivashanmugam AT, Subhadradevi V (2013) Antiulcerogenic effect of gallic acid in rats and its effect on oxidant and antioxidant parameters in stomach tissue. Indian J Pharm Sci 75(2):149–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Severino JF, Goodman BA, Kay CWM, Stolze K, Tunega D, Reichenauer TG, Pirker KF (2009) Free radicals generated during oxidation of green tea polyphenols: Electron paramagnetic resonance spectroscopy combined with density functional theory calculations. Free Radical Bio Med 46(8):1076–1088

    CAS  Google Scholar 

  • Shahriar K, Robin JM (2010) Monocyclic phenolic acids; Hydroxy- and Polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules 15:7985–8005

    Google Scholar 

  • Sharma OP, Bhat TK, Singh B (1998) Thin-layer chromatography of Gallic acid, methyl Gallate, Pyrogallol, Phloroglucinol, catechol, resorcinol, hydroquinone, Catechin, Epicatechin, Cinnamic acid, p-Coumaric acid, Ferulic acid and tannic acid. J Chromatogr A 822:167–171

    CAS  Google Scholar 

  • Sheetal A, Honnegowda S, Mandapati R (2007) Isolation and TLC Densitometric quantification of Gallicin, Gallic acid, Lupeol and β-Sitosterol from Bergia suffruticosa, a hitherto unexplored plant. Chromatographia 66:725–734

    Google Scholar 

  • Silvan JM, Mingo E, Hidalgo M, Pascual-Teresa S, Carrascosa AV, Martinez-Rodriguez AJ (2013) Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food Control 29(1):25–31

    CAS  Google Scholar 

  • Singh SA, Christendat D (2006) Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway. Biochemist 45(25):7787–7996

    CAS  Google Scholar 

  • Singleton VL (1981) Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv Food Res 27:149–242

    CAS  PubMed  Google Scholar 

  • Spudeit DA, Dolzan MD, Micke GA (2012) Conceitos basicos em Eletroforese Capilar. Sci Chromatogr 4:287–297

    Google Scholar 

  • Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758

    CAS  PubMed  Google Scholar 

  • Stalikas CD (2007) Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30:3268–3295

    CAS  PubMed  Google Scholar 

  • Su TR, Lin JJ, Tsai CC et al (2013) Inhibition of melanogenesis by gallic acid: possible involvement of the I3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci 14:20443–20458

    PubMed  PubMed Central  Google Scholar 

  • Subramaniana AP, Johna AA, Vellayyapana MV, Balajia A, Jaganathan SK, Supriyanto E, Yusofa M (2015) Gallic acid: prospects and the molecular mechanisms of its anticancer activity. RSC Adv 00:1–11

    Google Scholar 

  • Sun Z, Zhao L, Zuo L, Qi C, Zhao P, Hou X (2014) A UHPLC –MS/ MS method for simultaneous determination of six flavonoids, Gallic acid and 5,8-Dihydroxy-1,4-Naphthoquinone in rat plasma and its application to a pharmacokinetic study of cortex Juglandis mandshuricae extract. J Chromatogr B 958(1):55–62

    CAS  Google Scholar 

  • Thakur N, Nath AK (2017) Detection and production of Gallic acid from novel fungal strain- Penicillium crustosum AN3 KJ820682. Curr Trends Biotechnol Pharm 11(1):60–66

    CAS  Google Scholar 

  • Tiwari P, Singh A, Singh U, Maurya S, Singh M (2009) Nutritional importance of some dry fruits based on their phenolic acids. The Int J Nutri Well 8(1)

    Google Scholar 

  • Tomas-Barberan FA, Clifford MN (2000) Dietary hydroxybenzoic acid derivatives-nature, occurrence and dietary burden. J Sci Food Agric 80:1024–1032

    CAS  Google Scholar 

  • Tor ER, Francis TM, Holstege DM, Galey FD (1996) GC/MS determination of Pyrogallol and Gallic acid in biological matrices as diagnostic indicators of oak exposure. J Agric Food Chem 44(5):1275–1279

    CAS  Google Scholar 

  • Trevino-Cueto B, Luis M, Contreras-Esquivel JC, Rodríguez R, Aguilera A, Aguilar CN (2007) Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant (Larrea tridentata Cov.). Bioresour Technol 98:721–724

    CAS  PubMed  Google Scholar 

  • Tung YT, Wu JH, Huang CC, Peng HC, Chen YL, Yang SC, Chang ST (2009) Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride induced chronic liver injury in rats. Food Chem Tox 47:1385–1392

    CAS  Google Scholar 

  • Vaquero MJ, Alberto MR, de Nadra MC (2007) Antibacterial effect of phenolic compounds from different wines. Food Control 18(2):93–101

    Google Scholar 

  • Veluri R, Singh RP, Liu Z, Thompson JA, Agarwal R, Agarwal C (2006) Fractionation of grape seed extract and identification of gallic acid as one of the major active constituents causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells. Carcinogenesis 27(7):1445–1453

    CAS  PubMed  Google Scholar 

  • Wacher VJ, Benet LZ (2000) Use of gallic acid esters to increase bioavailability of orally administered pharmaceutical compounds, WO2000051643

    Google Scholar 

  • Wang H, Helliwell K, You X (2000) Isocratic elution system for the determination of Catechins, caffeine and Gallic acid in green tea using HPLC. Food Chem 68:115–121

    CAS  Google Scholar 

  • Wang XH, Cai C, Li XM (2016) Optimal extraction of Gallic acid from Suaeda glauca Bge. Leaves and enhanced efficiency by ionic liquids. Int J Chem Eng, 2016, 5217802, 9 https://doi.org/10.1155/2016/5217802

  • Weetall HH (1986) Enzymatic synthesis of gallic acid esters, EP0137601A3

    Google Scholar 

  • Werner I, Bacher A, Eisenreich W (1997) Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi. J Bio Chem 272(41):25474–25482

    CAS  Google Scholar 

  • Werner RA, Rossmann A, Schwarz C, Bacher A, Schmidt HL, Eisenreich W (2004) Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance. Phytochemistry 65(20):2809–2813

    CAS  PubMed  Google Scholar 

  • Yue ME, Jiang TF, Shi YP (2006) Determination of Gallic acid and Salidroside in Rhodiola and its preparation by capillary electrophoresis. J Anal Chem 61:365–368

    CAS  Google Scholar 

  • Zarate AP, Cruz MA et al (2015) Gallic acid production under anaerobic submerged fermentation by two bacilli strains. Microb Cell Fac 14:209

    Google Scholar 

  • Zenk MH (2014) Notizen: Zur Frage der Biosynthese von Gallussäure. Zeitschrift für Naturforschung B 19(1):83–84

    Google Scholar 

  • Zhao J, Khan IA, Fronczek FR (2011) Gallic acid Acta Crystallographica section E. Struct Reports Online 67:316–317. https://doi.org/10.1107/S1600536811000262

    Article  CAS  Google Scholar 

  • Zhu MJ, Olsen SA, Sheng L, Xue Y, Yue W (2015) Antimicrobial efficacy of grape seed extract against Escherichia coli O157:H7 growth, motility and Shiga toxin production. Food Control 51:177–182

    CAS  Google Scholar 

  • Zivkovic J, Savikin K, Jankovic T, Cujic N, Menkovic N (2018) Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Separ Puri Technol 194:40–47. https://doi.org/10.1016/j.seppur.2017.11.032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhiman, S., Mukherjee, G. (2021). Gallic Acid (GA): A Multifaceted Biomolecule Transmuting the Biotechnology Era. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_8

Download citation

Publish with us

Policies and ethics