Skip to main content

The Biology of Legumes and Their Agronomic, Economic, and Social Impact

  • Chapter
  • First Online:
The Plant Family Fabaceae

Abstract

Intensive agriculture and meat-based westernized diets have brought a heavy environmental burden to the planet. Legumes, or pulses, are members of the large Fabaceae (Leguminosae) family, which comprise about 5% of all plant species. They are ancient crops whose popularity both for farmers and consumers has gone through several stages of acceptance, and in recent years, legumes have regained their luster. This is due to a global understanding that: (1) farming systems need to promote biodiversity, (2) biological nitrogen fixation is an important tool to reduce the application of external chemical inputs, namely in the form of nitrogen fertilizers, and that (3) plant-based foods have fewer adverse environmental effects per unit weight, per serving, per unit of energy, or per protein weight than do animal source foods, across various environmental indicators. Legumes play a key role in answering these three global challenges and are pivotal actors in the diversification and sustainable intensification of agriculture, particularly in light of new and urgent challenges such as climate change. In this chapter, we showcase the importance of legumes as contemporary agents of change, whose impacts start in the field, but then branch out into competitive global economies, modernized societies, and ultimately, improved food security and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarca-Gómez L, Abdeen ZA, Hamid ZA et al (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390(10113):2627–2642

    Google Scholar 

  • Abdelmajid K, Karim BH, Chedly A (2008) Symbiotic response of common bean (Phaseolus vulgaris L.) to iron deficiency. Acta Physiol Plantarum 30:27–34

    CAS  Google Scholar 

  • Abdullah M, Marinangeli CPF, Jones PJH, Carlberg JG (2017) canadian potential healthcare and societal cost savings from consumption of pulses: a cost-of-illness analysis. Nutrients 9:793

    PubMed Central  Google Scholar 

  • Akaichi F (2019) British consumers’ demand for legumes. In: Presentation at the ‘Transition paths to sustainable legume-based systems in Europe’ TRUE annual meeting, Porto, July 2019

    Google Scholar 

  • Akter Z, Pageni BB, Lupwayi NZ, Balasubramanian PM (2018) Biological nitrogen fixation by irrigated dry bean (Phaseolus vulgaris L.) genotypes. Can J Plant Sci 98(5):1159–1167

    CAS  Google Scholar 

  • Alalwan TA, Mandeel QA, Al-Sarhani L (2017) Traditional plant-based foods and beverages in Bahrain. J Ethnic Foods 4:274–283

    Google Scholar 

  • Altieri MA, Funes-Monzote MR, Peterson P (2011) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32(1):1–13

    Google Scholar 

  • Alves BRJ, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    Google Scholar 

  • Appel LJ (2005) Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the omniheart randomized trial. JAMA J Am Med Assoc 294:2455–2464

    CAS  Google Scholar 

  • Asif M, Rooney LW, Ali R, Riaz MN (2013) Application and opportunities of pulses in food system: a review. Crit Rev Food Sci Nutr 53(11):1168–1179

    CAS  PubMed  Google Scholar 

  • Asouti E, Fuller DQ (2013) A contextual approach to the emergence of agriculture in southwest Asia: reconstructing early Neolithic plant-food production. Curr Anthropol 54(3):299–345

    Google Scholar 

  • Benjelloun I, Thami Alami I, Douira A, Udupa SM (2019) Phenotypic and genotypic diversity among symbiotic and non-symbiotic bacteria present in chickpea nodules in Morocco. Front Microbiol 10:1885

    PubMed  PubMed Central  Google Scholar 

  • Boye J, Zare F, Pletch A (2010) Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Res Int 43(2):414–431. https://doi.org/10.1016/j.foodres.2009.09.003

    Article  CAS  Google Scholar 

  • Büchi L, Gebhard CA, Liebisch F, Sinaj S, Ramseier H, Charles R (2015) Accumulation of biologically fixed nitrogen by legumes cultivated as cover crops in Switzerland. Plant Soil 393:163–175

    Google Scholar 

  • Calles T, Del Castello R, Baratelli M, Xipsiti M, Navarro DK (2019a) The international year of pulses: final report Rome. Available from http://www.wipo.int/amc/en/mediation/rules

  • Calles T, Xipsiti M, del Castello R (2019b). Legacy of the international year of pulses. Environ Earth Sci 78:124. https://link.springer.com/article/10.1007/s12665-019-8106-6

  • Castro RE, Sierra A, Mojica JE, Carulla JE, Lascano CE (2017) Effect of species and management of legumes used as green manures in the quality and yield of a forage crop used in livestock systems in the dry tropics. Archivos de Zootecnia 66:99–106

    Google Scholar 

  • Cazzato E, Laudadio V, Stellacci AM, Ceci E, Tufarelli V (2012) Influence of sulphur application on protein quality, fatty acid composition and nitrogen fixation of white lupin (Lupinus albus L.). Eur Food Res Technol 235:963–969

    CAS  Google Scholar 

  • Chai BC, van der Voort JR, Grofelnik K, Eliasdottir HG, Klöss I, Perez-Cueto FJA (2019) Which diet has the least environmental impact on our planet? A systematic review of vegan, vegetarian and omnivorous diets. Sustainability 11(15):4110. https://doi.org/10.3390/su11154110

    Article  CAS  Google Scholar 

  • Chen J, Shen W, Xu H, Li Y, Luo T (2019) The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: a comparison between legume and non-legume plantations frontiers in microbiology, vol10, p 508. https://doi.org/10.3389/fmicb.2019.00508

  • Clark M, Science NR, Paul S, States U (2019) Changing dietary patterns as drivers of changing environmental impacts. In: Encyclopedia of food security and sustainability, vol 1. Elsevier, pp 172–177. http://dx.doi.org/10.1016/B978-0-08-100596-5.21992-6

  • Cullis C, Kunert KJ (2017) Unlocking the potential of orphan legumes. J Exp Bot 68:1895–1903

    CAS  PubMed  Google Scholar 

  • da Silva Júnior EB, Favero VO, Xavier GR, Boddey RM, Zilli JE (2018) Rhizobium inoculation of cowpea in Brazilian cerrado increases yields and nitrogen fixation. Agron J 110:722–727

    Google Scholar 

  • de Boer J, Aiking H (2017) Pursuing a low meat diet to improve both health and sustainability: how can we use the frames that shape our meals? Ecol Econ 142:238–248

    Google Scholar 

  • De Notaris C, Rasmussen J, Sørensen P, Olesen JE (2018) Nitrogen leaching: a crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agric Ecosyst Environ 255:1–11

    Google Scholar 

  • del Cerro P, Pérez-Montaño F, Gil-Serrano A, López-Baena FJ, Megías M, Hungria M, Ollero FJ (2017) The Rhizobium tropici CIAT 899 NodD2 protein regulates the production of Nod factors under salt stress in a flavonoid-independent manner. Sci Rep 7:46712. https://doi.org/10.1038/srep46712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denison RF, Okano Y (2003) Leghaemoglobin oxygenation gradients in alfalfa and yellow sweetclover nodules. J Exp Bot 54:1085–1091

    CAS  PubMed  Google Scholar 

  • Dhamala NR, Rasmussen J, Carlsson G, Søegaard K, Eriksen J (2018) Effects of including forbs on N2-fixation and N yield in red clover-ryegrass mixtures. Plant Soil 424:525–537

    CAS  Google Scholar 

  • Estrada-de los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L, Khan N, Maluk M, Lafos M, Humm E, Arrabit M, Crook M, Gross E, Simon MF, Dos Reis Junior FB, Whitman WB, Shapiro N, Poole PS, Hirsch AM, Venter SN, James EK (2018) Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae. Genes 9:389

    Google Scholar 

  • European Parliament’s Committee on Agriculture and Rural Development (2013) Environmental role of protein crops in the new common agriculture policy. In: Brussels: European Parliament. Retrieved from http://www.legumefutures.de/images/The_environmental_role_of_protein_crops_in_the_new_Common_Agricultural_Policy.pdf

  • Everwand G, Cass S, Dauber J, Williams M, Stout J (2017) Legume Crops and Biodiversity. In: Murphy-Bokern D, Stoddard FL, Watson CA (eds) Legume-supported cropping systems. CABI International, UK, pp 55–69

    Google Scholar 

  • FAO, IFAD, UNICEF, WFP and WHO (2019) The state of food security and nutrition in the world 2019. Safeguarding against economic slowdowns and downturns. Rome, FAO. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Ferguson B, Lin M-H, Gresshoff PM (2013) Regulation of legume nodulation by acidic growth conditions. Plant Signal Behav 8(3):e23426. https://doi.org/10.4161/psb.23426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson B, Mens C, Hastwell A, Zhang M, Su H, Jones C, Chu X, Gresshoff P (2019) Legume nodulation: the host controls the party. Plant Cell Environ 42:41–51

    CAS  PubMed  Google Scholar 

  • Fewtrell M, Bronsky J, Campoy C et al (2017) Complementary feeding: a position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) committee on nutrition. J Pediatr Gastroenterol Nutr 64(1):119–132

    CAS  PubMed  Google Scholar 

  • Figueira N, Curtain F, Beck E, Grafenauer S (2019) Consumer understanding and culinary use of legumes in Australia. Nut 11(7):1575

    CAS  Google Scholar 

  • Food and Agriculture Organization (2015) INPHO cookbook http://www.fao.org/in-action/inpho/resources/cookbook/en

  • Food and Agriculture Organization (2016) The climate is changing. Food and agriculture must too. Available from https://login.libproxy.rpi.edu/login?qurl=https%3a%2f%2fsearch.proquest.com %2fdocview%2f1868155818%3faccountid%3d28525%250A, http://sfx-serv.lib.rpi.edu/locater ?url_ver=Z39.88-2004%26rft_val_fmt=info:ofi/fmt:kev:mtx:journal%26genre=unknown%26 sid=ProQ:ProQ%3Aabiglobal%26atitle=The+climate+

  • Food and Agriculture Organization Stat (2019) Food and agricultural organization of the United Nations, data. http://www.fao.org/faostat/en/#data/QC. Last access 14 Nov 2019

  • Fournier J, Teillet A, Chabaud M, Ivanov S, Genre A, Limpens E, Carvalho-Niebel FD, Barker D (2015) Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. Plant Physiol 167:1233–1242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Cooper JW, Fodor N, Colmer TD, Considine MJ, Lam H-M et al (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2(8):1–10. https://doi.org/10.1038/nplants.2016.112

    Article  Google Scholar 

  • Graça P, Gregório MJ, de Sousa SM, Brás S, Penedo T, Carvalho T et al (2018) A new interministerial strategy for the promotion of healthy eating in Portugal: implementation and initial results. Health Res Policy Syst 16(1):102

    PubMed  PubMed Central  Google Scholar 

  • Grela ER, Samoli W (2017) Content of minerals and fatty acids and their correlation with phytochemical compounds and antioxidant activity of leguminous seeds. Biol Trace Elem Res 180:338–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliot GN, Bontemps C, Estrada de Los Santos P, Gross E, dos Reis Junior FB, Sprent JI, JPW Y, James EK (2011) legume-nodulating beta-proteobacteria:diversity, host-range and future prospects. Mol Plant Microb Interact 24:1276–1288

    Google Scholar 

  • Hagmann D, Siegrist M, Hartmann C (2019) Meat avoidance: motives, alternative proteins and diet qualityin a sample of Swiss consumers. Public Health Nutr 22(13):2448–2459

    PubMed  Google Scholar 

  • Hancock JF (2012) Plant evolution and the origin of crop species. CABI. James Hancock, Michigan State University, USA, p 256

    Google Scholar 

  • Hansen S, Frøseth RB, Stenberg M, Stalenga J, Olesen J, Krauss M, Radzikowski P, Doltra J, Nadeem S, Torp T, Pappa V, Watson CA (2019) Reviews and syntheses: review of causes and sources of N2O emissions and NO3 leaching from organic arable crop rotations. Biogeosciences 16:2795–2819

    CAS  Google Scholar 

  • Harwatt H, Sabaté J, Eshel G, Soret S, Ripple W (2017) Substituting beans for beef as a contribution toward US climate change targets. Clim Change 143(1–2):261–270

    Google Scholar 

  • Havemeier S, Erickson J, Slavin J (2017) Dietary guidance for pulses: the challenge and opportunity to be part of both the vegetable and protein food groups. Ann N Y Acad Sci 1392(1):58–66

    PubMed  Google Scholar 

  • Hossain Z, Wang X, Hamel C, Morrison MJ, Gan Y (2016) Biological nitrogen fixation by pulse crops on semiarid Canadian prairies. Can J Plant Sci 97:119–131

    Google Scholar 

  • Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982

    CAS  PubMed  Google Scholar 

  • Iannetta PPM, Young M, Bachinger J, Bergkvist G, Doltra J, Lopez-Bellido RJ, Monti M, Pappa VA, Reckling M, Topp CFE, Walker RL, Rees RM, Watson CA, James EK, Squire GR, Begg GS (2016) A comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation. Frontiers Plant Sci 7:1700. https://doi.org/10.3389/fpls.2016.01700

    Article  Google Scholar 

  • Ibáñez F, Fabra A (2011) Rhizobial Nod factors are required for cortical cell division in the nodule morphogenetic programme of the Aeschynomeneae legume Arachis. Plant Biol 13:794–800

    PubMed  Google Scholar 

  • Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186

    CAS  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A Rev Agric Sust Dev 32:329–364. https://doi.org/10.1007/s13593-011-0056-7

    Article  CAS  Google Scholar 

  • Kamboj R, Nanda V (2018) Proximate composition, nutritional profile and health benefits of legumes—a review. Legum Res Int J 41:325–332

    Google Scholar 

  • Keatinge JD, Chadha ML, Hughes JDA, Easdown WJ, Holmer RJ, Tenkouano A, Yang RY, Mavlyanova R, Neave S, Afari-Sefa V, Luther G (2012) Vegetable gardens and their impact on the attainment of the millennium development goals. Biol Agric Hort 28(2):71–85

    Google Scholar 

  • Lăcătușu CM, Grigorescu ED, Floria M, Onofriescu A, Mihai BM (2019) The mediterranean diet: from an environment-driven food culture to an emerging medical prescription. Int J Env Res Pub Health 16(6):942

    Google Scholar 

  • Lee GA (2012) Archeological perspectives on the origins of azuki (Vigna angularis). Holocene 23(3):453–559

    Google Scholar 

  • Logatcheva K, van Galen MA (2015) Primary food processing; cornerstone of plant-based food production and the bio-economy in Europe. Wageningen, LEI Wageningen UR (University and Research centre), LEI Report 2015-121. 42 pp

    Google Scholar 

  • Lopez VH, Vargas-Vasquez MLP, Muruaga JS, Mayek-Pérez YN (2013) Origin, domestication and diversification of common beans: advances and perspectives. Revista fitotecnia mexicana publicada por la Sociedad Mexicana de Fitogenética 36(2):95–104

    Google Scholar 

  • Godfray HCJ, Aveyard P, Garnett T, Hall JW, Key TJ, Lorimer J, et al. (2018) Meat consumption, health, and the environment. Science 361(6399): eaam5324. http://dx.doi.org/10.1126/science.aam5324

  • LPWG—The Legume Phylogeny Taxonomy Group (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. the legume phylogeny working group. Taxon 66:44–77

    Google Scholar 

  • Lv H, Lin S, Wang Y, Lian X, Zhao Y, Li Y, Du J, Wang Z, Wang J, Butterbach-Bahl K (2019) Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environ Poll 245:694–701

    CAS  Google Scholar 

  • Macdiarmid JI, Whybrow S (2019) Nutrition from a climate change perspective. Proc Nutr Soc 78(3):380–387. https://doi.org/10.1017/S0029665118002896

    Article  CAS  PubMed  Google Scholar 

  • Maggio A, Criekinge TV, Malingreau JP (2015) Global food security 2030: assessing trends with a view to guiding future EU policies EUR 27252 EN—Joint Research Centre—Foresight and behavioural insights unit, 39 pp. http://dx.doi.org/10.2788/5992

  • Magrini M-B, Anton M, Cholez C, Corre-Hellou G, Duc G, Jeuffroy M-H, Meynard J-M, Pelzer E, Voisin A-S, Walrand S (2016) Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Environ Econ 126:152–162. https://doi.org/10.1016/j.ecolecon.2016.03.024

    Article  Google Scholar 

  • Maier RJ (2004) Chapter 5: Nitrogen fixation and respiration: two processes linked by the energetic demands of nitrogenase. In: Zannoni D (eds) Respiration in Archaea and Bacteria. Advances in photosynthesis and respiration, vol 16. Springer, Dordrecht

    Google Scholar 

  • Marinangeli CPF, Curran J, Barr SI, Slavin J, Puri S, Swaminathan S et al (2017) Enhancing nutrition with pulses: defining a recommended serving size for adults. Nut Rev 75(12):990–1006

    Google Scholar 

  • Martin-Guay M-C, Paquette A, Dupras J, Rivest D (2018) The new green revolution: sustainable intensification of agriculture by intercropping. Sci Tot Env 615:767–772

    CAS  Google Scholar 

  • Mason P, Lang T (2017) Sustainable diets. Routledge, London. https://doi.org/10.4324/9781315802930

    Book  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosyst 15:401–415

    CAS  Google Scholar 

  • Miller RW, McRae DG, Al-Jobore A, Berndt WB (1988) Respiration supported nitrogenase activity of isolated Rhizobium meliloti bacteroids. J Cell Biochem 38:35–49

    CAS  PubMed  Google Scholar 

  • Minchin FR, James EK, Becana M (2008) oxygen diffusion, production of reactive oxygen and nitrogen species, and Antioxidants in Legume Nodules M.J. In: Dilworth et al (eds), Nitrogen-fixing Leguminous Symbioses. Springer, pp 321–362

    Google Scholar 

  • Misra R (2011) Indian foods: AAPI’s guide to nutrition, health and diabetes, 2nd edn. Allied Publishers Private Limited, USA. ISBN 978-81-8424-687-2

    Google Scholar 

  • Mudryj AN, Yu N, Aukema HM (2014) Nutritional and health benefits of pulses. Appl Physiol Nutr Metab 39(11): 1197–204. http://www.nrcresearchpress.com/doi/abs/10.1139/apnm-2013-0557

  • Murray JD (2011) Invasion by invitation: rhizobial infection in legumes. Mol Plant-Mic Int 24:631–639

    CAS  Google Scholar 

  • Muzquiz M, Varela A, Burbano C, Cuadrado C, Guillamón E, Pedrosa MM (2012) Bioactive compounds in legumes: pronutritiveand antinutritive actions. Implications for nutrition and health. Phytochem Rev 11:227–244

    CAS  Google Scholar 

  • Nimmo J, Lynch DH, Owen J (2013) Quantification of nitrogen inputs from biological nitrogen fixation to whole farm nitrogen budgets of two dairy farms in Atlantic Canada. Nut Cyc Agroec 96:93–105

    Google Scholar 

  • Ntatsi G, Karkanis A, Yfantopoulos D, Olle M, Travlos I, Thanopoulos R, Bilalis D, Bebeli P, Savvas D (2018) Impact of variety and farming practices on growth, yield, weed flora and symbiotic nitrogen fixation in faba bean cultivated for fresh seed production. Acta Agric Scand Sect B Plant Soil Sci 38:619–630

    Google Scholar 

  • Ntatsi G, Karkanis A, Yfantopoulos D, Pappa V, Konosonoka IH, Travlos I, Bilalis D, Bebeli P, Savvas D (2019) Evaluation of the field performance, nitrogen fixation efficiency and competitive ability of pea landraces grown under organic and conventional farming systems. Arch Agron Soil Sci 65:249–307

    Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Ann Rev Plant Biol 59:519–546

    CAS  Google Scholar 

  • Oré Barrios C, Mäurer E, Lippert C (2020) Factors determining the spatial distribution of grain legume cultivation in the EU. In: Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V., vol 55 (in press)

    Google Scholar 

  • Pampana S, Masoni A, Mariotti M, Ercoli L, Arduini I (2018) Nitrogen fixation of grain legumes differs in response to nitrogen fertilization. Exp Ag 54:66–82

    Google Scholar 

  • Peleg-Grossman S, Volpin H, Levine A (2007) Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. J Exp Bot 58:1637–1649

    CAS  PubMed  Google Scholar 

  • Peoples MB, Angus JF, Swan AD, Dear BS, Hauggard-Nielsen H, Jensen ES, Ryan MH, Virgona JM (2004) Nitrogen dynamics in legume-based pasture systems. In: Mosier AR, Syers K, Freney JR (eds) Agriculture and the nitrogen cycle. Island Press, Washington DC, pp 245–260

    Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khans DF, Hauggaard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17. https://doi.org/10.1007/BF03179980

    Article  CAS  Google Scholar 

  • Peoples MB, Swan AD, Goward L, Kirkegaard JA, Hunt JR, Li GD, Schwenke GD, Herridge DF, Moodie M, Wilhelm N, Potter T, Denton MD, Browne C, Phillips LA, Khan DF (2017) Soil mineral nitrogen benefits derived from legumes and the comparisons of the apparent recovery of legume or fertiliser nitrogen by wheat. Soil Res 55:600–615

    CAS  Google Scholar 

  • Peoples MB, Hauggaard-Nielsen H, Huguenin-Elie O, Jensen ES, Justes E, Williams M (2019) The contributions of legumes to reducing the environmental risk of agricultural production. In: Lemaire G, Carvalho PCDF, Kronberg S, Recous S (eds) Agroecosystem diversity: reconciling contemporary agriculture and environmental quality. Elsevier, Academic, Cambridge, pp 123–143. ISBN 978-01-2811-050-8

    Google Scholar 

  • Perignon M, Vieux F, Soler LG, Masset G, Darmon N (2017) Improving diet sustainability through evolution of food choices: review of epidemiological studies on the environmental impact of diets. Nut Rev 75(1):2–17

    Google Scholar 

  • Polak R, Phillips EM, Campbell A (2015) Legumes: health benefits and culinary approaches to increase intake. Clin Diab 33(4):198–205

    Google Scholar 

  • Rakotovololona L, Beaudoin N, Ronceux A, Venet E, Mary B (2019) Driving factors of nitrate leaching in arable organic cropping systems in Northern France. Agric Ecosys Environ 272:38–51

    CAS  Google Scholar 

  • Rejili M, Mahdhi M, Fterich A, Dhaoui S, Guefrachi I, Abdeddayem R, Mars M (2012) Symbiotic nitrogen fixation of wild legumes in Tunisia: soil fertility dynamics, field nodulation and nodules effectiveness. Agric Ecosys Environ 157:60–69

    Google Scholar 

  • Renna M, Rinaldi VA, Gonnella M (2015) The mediterranean diet between traditional foods and human health: the culinary example of Puglia (Southern Italy). Int J Gastr Food Sci 2:63–71

    Google Scholar 

  • Roy S, Liu W, Nandety RS, Crook AD, Mysore KS, Pislariu CI, Frugoli JA, Dickstein R, Udvardi MK (2019) Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell https://doi.org/10.1105/tpc.19.00279. (Epub ahead of print)

  • Rutten PJ, Poole PS (2019) Oxygen regulatory mechanisms of nitrogen fixation in rhizobia. Adv Micro Phys 75:325–389

    Google Scholar 

  • Sadegholvad S, Yeatman H, Parrish AM, Worsley A (2017) What should be taught in secondary schools’ nutrition and food systems education ?Views from prominent food-related professionals in Australia. Nutrients 9(11):1207

    PubMed Central  Google Scholar 

  • Sedivy J, Wu F, Hanzawa Y (2017) Soybean domestication: the origin, genetic architecture and molecularbases. New Phytol 214:539–553

    PubMed  Google Scholar 

  • Singh B, Pal J, Khetan S, Singh N (2016) Bioactive constituents in pulses and their health benefits. J Food Sci Technol 4(4):858–870

    Google Scholar 

  • Skowronska M, Filipek T (2014) Life cycle assessment of fertilizers: a review. Int Agrophys 28:101–110

    Google Scholar 

  • Smith D, Riddle L, Kerr S, Atterberry K, Lanigan J, Miles C (2016) Barriers and opportunities to serving pulses in school meals in Washington schools. J Child Nutr Manag 40(1):8

    Google Scholar 

  • Smýkal P, Coyne CJ, Ambrose MJ, Maxted N, Schaefer H, Blair MW, Berger J, Greene SL, Nelson MN, Besharat N, Vymyslický T, Toker C, Saxena RK, Roorkiwal M, Pandey MK, Hu J, Li YH, Wang LX, Guo Y, Qiu LJ, Redden RJ, Varshney RK (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34:43–104. https://doi.org/10.1080/07352689.2014.897904

    Article  Google Scholar 

  • Snapp S, Wilke B, Gentry LE, Zoellner D (2017) Compost legacy down-regulates biological nitrogen fixation in a long-term field experiment. Agron J 109(6):2662–2669

    CAS  Google Scholar 

  • Sprent JI (2009) Global distribution of legumes. In: Sprent JI (ed) Legume nodulation: a global perspective. Wiley, NJ, USA, pp 35–50. ISBN 978-1-405-18175-4

    Google Scholar 

  • Sprent JI, Ardley J, James EK (2017) Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 215:40–56. https://doi.org/10.1111/nph.14474

    Article  CAS  PubMed  Google Scholar 

  • Springmann M, Godfray HCJ, Rayner M, Scarborough P (2016) Analysis and valuation of the health and climate change co-benefits of dietary change. Proc Nat Acad Sci 113(15):4146–4151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Techn Agr 4:2. https://doi.org/10.1186/s40538-016-0085-1

    Article  Google Scholar 

  • Tampakaki AP, Fotiadis CT, Ntatsi G, Savvas D (2017a) A novel symbiovar (aegeanense) of the genus Ensifer nodulates Vigna unguiculata. J Sci Food Agr 97:4314–4325

    CAS  Google Scholar 

  • Tampakaki AP, Fotiadis CT, Ntatsi G, Savvas D (2017b) Phylogenetic multilocus sequence analysis of indigenous slow-growing rhizobia nodulating cowpea (Vigna unguiculata L.) in Greece. Syst App Mic 40:179–189

    Google Scholar 

  • Tenkouano A (2011) The nutritional and economic potential of vegetables. State of the World, pp 27–38

    Google Scholar 

  • Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C (2017) Future threats to biodiversity and pathways to their prevention. Nature 546(7656):73–81

    CAS  PubMed  Google Scholar 

  • Tosh SM, Yada S (2010) Dietary fibres in pulse seeds and fractions: characterization, functional attributes, and applications. Food Res Int 43(2):450–460. https://doi.org/10.1016/j.foodres.2009.09.005

    Article  CAS  Google Scholar 

  • van Dooren C, Douma A, Aiking H, Vellinga P (2017) Proposing a novel index reflecting both climate impact and nutritional impact of food products. Ecol Econ 131:389–398

    Google Scholar 

  • Vinod PN, Chandramouli PN, Kochc Manfred (2015) Estimation of nitrate leaching in groundwater in an agriculturally used area in the State Karnataka, India, using existing model and GIS. Aquat Procedia 4:1047–1053

    Google Scholar 

  • Webb P, Stordalen GA, Singh S, Wijesinha-Bettoni R, Shetty P, Lartey A (2018) Hunger and malnutrition in the 21st century. BMJ 361:1–5

    Google Scholar 

  • Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S et al (2019) Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393:447–492

    PubMed  Google Scholar 

  • Williams M, Roth B, Pappa V, Rees R (2017) Nitrogen and phosphorous losses from legume based agriculture. In: Murphy-Bokern D, Stoddard F, Watson C (eds) Legumes in cropping systems. CABI, pp 37–54. ISBN: 978-17-8639-178-0

    Google Scholar 

  • Health Canada Canada’s Dietary Guidelines. Available online https://food-guide.canada.ca/en/

  • Zheng J, Qu Y, Kilasara MM, Mmari WN, Funakawa S (2019) Nitrate leaching from the critical root zone of maize in two tropical highlands of Tanzania: effects of fertilizer-nitrogen rate and straw incorporation. Soil Tillage Res 194:104295. https://doi.org/10.1016/j.still.2019.104295

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the EU Horizon 2020 Research and Innovation Program project “TRansition paths to sUstainable legume based systems in Europe|” (TRUE, www.true-project.eu) funded under Grant Agreement number 727973. MV, CS, EV, EP, HG, AP, AD are also supported by the Foundation for Science and Technology (FCT) under project UID/Multi/50016/2013. MAG is supported by the US Department of Agriculture through project 3060-21650-001-00D. The contents of this publication do not necessarily reflect the views or policies of the US Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. Scotland’s Rural College (SRUC) is supported by the Scottish Government’s Rural and Environmental Science and Analytical Services (RESAS), a Division of the Scottish Government. The James Hutton Institute (PI, MM, AK) is supported by the Scottish Government’s Rural and Environmental Science and Analytical Services (RESAS), a Division of the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta W. Vasconcelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasconcelos, M.W. et al. (2020). The Biology of Legumes and Their Agronomic, Economic, and Social Impact. In: Hasanuzzaman, M., Araújo, S., Gill, S. (eds) The Plant Family Fabaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-4752-2_1

Download citation

Publish with us

Policies and ethics