Skip to main content

Time Crystal Engineering in Catalytic Reaction Cycles

  • Chapter
  • First Online:
Rhythmic Oscillations in Proteins to Human Cognition

Part of the book series: Studies in Rhythm Engineering ((SRE))

Abstract

A breaking of translational symmetry in time generates ‘time crystal’, wherein the structural units get repeated against both time and space simultaneously to create a clocking topology. This chapter will retrospect the patterns and other physical properties of various single or nested catalytic cycles and present their way of transformation into time crystals. Considering each individual chemical reaction inside a catalytic reaction cycle as a single event, we can connect the events by time-consuming intermediate states to convert a catalytic cycle into a time crystal. Finally, a newly conceptualized time crystal engineering approach is employed here to selectively promote one of the certain reaction products from a catalytic reaction cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sachdev S (1999) Quantum phase transitions. Cambridge University Press, Cambridge

    Google Scholar 

  2. Das P, Pan S, Ghosh S, Pal P (2018) Cosmological time crystal: cyclic universe with a small cosmological constant in a toy model approach. Phy Rev D 98:024004

    Article  MathSciNet  Google Scholar 

  3. Zhang J, Hess PW, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I-D, Potter A C, Vishwanath A, Yao NY, Monroe C (2017) Observation of a discrete time crystal. Nature 543:217

    Google Scholar 

  4. Else DV, Bauer B, Nayak C (2016) Floquet time crystals. PRL 117:090402

    Article  Google Scholar 

  5. Lim CS (2014) The Higgs particle and higher-dimensional theories. Prog Theor Exp Phys 2014:02A101. https://doi.org/10.1093/ptep/ptt083

    Article  MATH  Google Scholar 

  6. Wilczek F (2012) Quantum time crystals. Phys Rev Lett 109:160401

    Article  Google Scholar 

  7. Bruno P (2013) Comment on “quantum time crystals”. Phys Rev Lett 110:118901

    Article  Google Scholar 

  8. Bruno P (2013) Impossibility of spontaneously rotating time crystals: a no-go theorem. Phys Rev Lett 111:070402

    Article  Google Scholar 

  9. Watanabe H, Oshikawa M (2015) Absence of quantum time crystals phys. Rev Lett 114:251603

    Article  MathSciNet  Google Scholar 

  10. Chandrashekaran MK (1974) Phase shifts in the Drosophila Pseudoobscura circadian rhythmevoked by temperature pulses of varying durations. J Interdiscipl Cycle Res 5:371–380

    Article  Google Scholar 

  11. Reddy S, Sonker D, Sing P, Saxena K, Singh S, Chhajed R, Tiwari S, Karthik KV, Ghosh S, Ray K, Bandyopadhyay A (2018) A brain-like computer made of time crystal: could a metric of prime alone replace a user and alleviate programming forever? soft computing applications. Springer Nature Singapore Pte Ltd 761:1–43

    Google Scholar 

  12. Li T, Gong Z-X, Yin Z-Q, Quan HT, Yin X, Zhang P, Duan L-M, Zhang X (2012) Space-time crystals of trapped ions. PRL 109:163001(1)–163001(5

    Google Scholar 

  13. Johnson JB, Bercot EA, Rowley JM, Coates GW, Rovis T (2007) Ligand-dependent catalytic cycle and role of styrene in nickel-catalyzed anhydride cross-coupling: evidence for turnover-limiting reductive elimination. J Am Chem Soc 129:2718–2725

    Google Scholar 

  14. Kozuch S, Shaik S (2011) How to conceptualize catalytic cycles? the energetic span model. AccChem Res 44:101–110

    Article  Google Scholar 

  15. Tokunaga N, Yoshida K, Hayashi T (2004) Mechanistic studies on the catalytic cycle of rhodium-catalyzed asymmetric 1,4-addition of aryltitanate reagents to α, β-unsaturated ketones. PNAS 101:5445–5449

    Article  Google Scholar 

  16. Yasuda Y, Nagao K, Shido Y, Mori S, Ohmiya H, Sawamura M (2015) Copper-catalyzed γ-selective and stereospecific allylic cross-coupling with secondary alkylboranes chem. Eur J 21:9666–9670

    Article  Google Scholar 

  17. Takayama Y, Ishii T, Ohmiya H, Iwai T, Schwarzer MC, Mori S, Taniguchi T, Monde K, Sawamura M (2017) Asymmetric synthesis of b-lactams through copper-catalyzed alkyne-nitrone coupling with a prolinol-phosphine chiral ligand chem. Eur J 23:8400–8404

    Article  Google Scholar 

  18. Cao L-M, Huang H-H, Wang J-W, Zhong D-C, Lu T-B (2018) The synergistic catalysis effect within a dinuclear nickel complex for efficient and selective electrocatalytic reduction of CO2 to CO. Green Chem 20:798–803

    Article  Google Scholar 

  19. Zhu S, Hu L, Jiang H (2014) Gold-catalyzed tandem Diels-Alder reactions of enynals/enynones with alkenes: generation and trapping of cyclic o-QDMs. Org Biomol Chem 12:4104–4111

    Article  Google Scholar 

  20. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Google Scholar 

  21. Engle KM, Mei T-S, Wasa M, Yu J-Q (2012) Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions Acc. Chem Res 45:788–802

    Article  Google Scholar 

  22. Waibel M, Cramer N (2010) Palladium-catalyzed arylative ring-opening reactions of norbornenols: entry to highly substituted cyclohexenes, quinolines, and tetrahydroquinolines. Angew Chem Int Ed 49:4455–4458

    Article  Google Scholar 

  23. Ishitsuka T, Okuda Y, Szilagyi RK, Mori S, Nishihara Y (2016) The molecular mechanism of palladium-catalysed cyano-esterification of methyl cyanoformate onto norbornene. Dalton Trans 45:7786–7793

    Article  Google Scholar 

  24. Wang J-W, Hou C, Huang H-H, Liu W-J, Ke Z-F, Lu T-B (2017) Further insight into the electrocatalytic water oxidation by macrocyclic nickel (II) complexes: the influence of steric effect on catalytic activity. Catal Sci Technol 7:5585–5593

    Article  Google Scholar 

  25. Rydzewski J, Nowak W (2017) Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations. Sci Rep. https://doi.org/10.1038/s41598-017-07993-0

    Article  Google Scholar 

  26. Guallar V, Friesner RA (2004) Cytochrome P450CAM enzymatic catalysis cycle: a quantum mechanics/molecular mechanics study. J Am Chem Soc 126:8501–8508

    Article  Google Scholar 

  27. Ohtsuka T, Ito H, Tanaka A (1997) Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated-chloroplasts. Plant Physiol 113:137–147

    Article  Google Scholar 

  28. Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  Google Scholar 

  29. Roy S, Sharma B, Pécaut J, Simon P, Fontecave M, Tran PD, Derat E, Artero V (2017) Molecular cobalt complexes with pendant amines for selective electrocatalytic reduction of carbon dioxide to formic acid. J Am Chem Soc 139:3685–3696

    Article  Google Scholar 

  30. Wang C-M, Wang Y-D, Xie Z-K (2014) Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations. Catal Sci Technol 4:2631

    Article  Google Scholar 

  31. Fischmeister C, Bruneau C (2011) Ene-yne cross-metathesis with ruthenium carbene catalysts, Beilstein. J Org Chem 7:156–166

    Google Scholar 

  32. Bonitatibus PJ Jr, Chakraborty S, Doherty MD, Siclovan O, Jones WD, Soloveichik GL (2015) Reversible catalytic dehydrogenation of alcohols for energy storage. PNAS 112:1687–1692

    Article  Google Scholar 

  33. Zeravcic Z, Brenner MP (2017) Spontaneous emergence of catalytic cycles with colloidal spheres. PNAS 114:4342–4347

    Article  Google Scholar 

  34. Nicewicz DA, MacMillan DWC (2008) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322:77–80

    Article  Google Scholar 

  35. Chinchilla R, Nájera C (2007) The sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem Rev 107: 874–922

    Google Scholar 

  36. Xu S, Zheng A, Wei Y, Chen J, Li J, Chu Y, Zhang M, Wang Q, Zhou Y, Wang J, Deng F, Liu Z (2013) Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angew Chem Int Ed 52:11564–11568

    Article  Google Scholar 

  37. Christmann U, Vilar R (2005) Monoligated palladium species as catalysts in cross-coupling reactions. Angew Chem Int Ed 44:366–374

    Google Scholar 

  38. Dumesic JA, Topsøe N-Y, Topsøe H, Chen Y, Slabiak T (1996) Kinetics of selective catalytic reduction of nitric oxide by ammonia over vanadia/titania. Journal of Catal 163:409–417

    Google Scholar 

  39. Emerson JP, Coulter ED, Phillips RS, Kurtz DM Jr (2003) Kinetics of the superoxide reductase catalytic cycle. J Biol Chem 278:39662–39668

    Article  Google Scholar 

  40. Yang M, Kabulski JL, Wollenberg L, Chen X, Subramanian M, Tracy TS, Lederman D, Gannett PM, Wu N (2009) Electrocatalytic drug metabolism by CYP2C9 bonded to a self-assembled monolayer-modified electrode. Drug Metabolism Diposition 37:892–899

    Article  Google Scholar 

  41. Barnaba C, Gentry K, Sumangala N, Ramamoorthy A (2017) The catalytic function of cytochrome P450 is entwined with its membrane-bound nature. Food Res. https://doi.org/10.12688/f1000research.11015.1

  42. Kiedorf G, Hoang DM, Müller A, Jörke A, Markert J, Arellano-Garcia H, Seidel-Morgenstern A, Hamel C (2014) Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephoscatalyst. Chem Eng Sci 115:31–48

    Article  Google Scholar 

  43. Larion M, Miller BG (2010) Global fit analysis of glucose binding curves reveals a minimal model for kinetic cooperativity in human glucokinase. Biochemistry 49:8902–8911

    Article  Google Scholar 

  44. Ainslie GR, Shill JP Jr, Neet KE (1972) A slow transition model for relating transients and cooperative kinetics of enzymes. J Biol Chem 247:7088–7096

    Article  Google Scholar 

  45. Santacesaria E (1999) Fundamental chemical kinetics: the first step to reaction modelling and reaction engineering. Catal Today 52:113–123

    Article  Google Scholar 

  46. Smith JM (1981) Chemical engineering kinetics. McGraw-Hill, New York

    Google Scholar 

  47. Parshall GW (1980) Homogeneous catalysis. Wiley/Interscience, New York

    Google Scholar 

  48. Stewart J, Douglas R, Goguet A (2014) Integrating intrinsic and global kinetics as a dual kinetic model for automotive catalysis. J Automob Eng 228:285–294

    Article  Google Scholar 

  49. Blackmond DG (2015) Kinetic profiling of catalytic organic reactions as a mechanistic tool. J Am Chem Soc 137:10852–10866

    Article  Google Scholar 

  50. Blackmond DG (2005) Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew Chem Int Ed 44:4302–4320

    Article  Google Scholar 

  51. Kozuch S, Shaik S (2008) Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration. J Phys Chem A 112:6032–6041

    Article  Google Scholar 

  52. Kozuch S, Shaik SA (2006) Combined kinetic-quantum mechanical model for assessment of catalytic cycles: application to cross-coupling and heck reactions. J Am Chem Soc 128:3355

    Article  Google Scholar 

  53. Trost BM, Yeh VSC (2002) A dinuclear Zn catalyst for the asymmetric nitroaldol (Henry) reaction. Angew Chem Int Ed 41:861–863

    Article  Google Scholar 

  54. Trost BM, Yeh VSC (2002) Effect of ligand structure on the zinc-catalyzed Henry reaction. Asymmetric syntheses of (−)-denopamine and (−)-arbutamine. Org Lett 4:2621–2623

    Article  Google Scholar 

  55. White JD, Shaw S (2012) A new catalyst for the asymmetric Henry reaction: synthesis of β-nitroethanols in high enantiomeric excess. Org Lett 14:6270–6273

    Article  Google Scholar 

  56. Youn SW, Kim YH (2000) Facile synthesis of 2-nitroalkanols mediated with LiAlH4 as catalyst. Synlett 6:880–882

    Google Scholar 

  57. Risgard T, Gothelf KV, Jorgensen K A (2003) Catalytic asymmetric Henry reactions of silyl nitronates with aldehydes. Org Biomol Chem 1:153–156

    Google Scholar 

  58. Sasai H, Tokunga T, Watanabe S, Suzuki T, Itoh N, Shibasaki M (1995) Efficient diastereoselective and enantioselective nitroaldol reactions from prochiral starting materials: utilization of La-Li-6,6’-disubstituted BINOL complexes as asymmetric catalysts. J Org Chem 60:7388–7389

    Article  Google Scholar 

  59. Basavaiah D, Rao AJ, Satyanarayana T (2003) Recent advances in the Baylis-Hillman reaction and applications. Chem Rev 103:811–891

    Article  Google Scholar 

  60. Declerck V, Martinez J, Lamaty F (2009) aza-Baylis-Hillman Reaction. Chem Rev 109:1–48

    Article  Google Scholar 

  61. Aggarwal VK, Mereu A, Tarver GJ, McCague R (1998) Metal- and Ligand-accelerated catalysis of the Baylis-Hillman reaction. J Org Chem 63:7183–7189

    Article  Google Scholar 

  62. Shi M, Jiang J-K, Li C-Q (2002) Lewis base and L-proline co-catalyzed Baylis–Hillman reaction of arylaldehydes with methyl vinyl ketone. Tetrahedron Lett 43:127–130

    Article  Google Scholar 

  63. Davies HJ, Ruda AM, Tomkinson NCO (2007) Aminocatalysis of the Baylis-Hillman reaction: an important solvent effect. Tetrahedron Lett 48:1461–1464

    Article  Google Scholar 

  64. Aroyan CE, Vasbinder MM, Miller SJ (2005) Dual catalyst control in the enantioselective intramolecular Morita-Baylis-Hillman reaction. Org Lett 7: 3849–3849–3851

    Google Scholar 

  65. Raheem IT, Jacobsen EN (2005) Highly enantioselective Aza-Baylis–Hillman reactions catalyzed by chiral thiourea derivatives. Adv Synth Catal 347:1701–1708

    Article  Google Scholar 

  66. Imbos R, Minnaard AJ, Feringa BL (2002) A highly enantioselective intramolecular heck reaction with a monodentate ligand. J Am Chem Soc 124:184–185

    Article  Google Scholar 

  67. Minatti A, Zheng X, Buchwald SL (2007) Synthesis of chiral 3-substituted indanones via an enantioselective reductive-heck reaction. J Org Chem 72:9253–9258

    Article  Google Scholar 

  68. Mitsuda N, Ohme-Takagi M (2009) Functional analysis of transcription factors in arabidopsis. Plant Cell Physiol 50:1232–1248

    Article  Google Scholar 

  69. Ikeda M, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21:3493–3505

    Article  Google Scholar 

  70. Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C, Laux T, Davies B (2006) Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell 18:560–573

    Article  Google Scholar 

  71. Tanaka Y, Oshima Y, Yamamura T, Sugiyama M, Mitsuda N, Ohtsubo N, Ohme-Takagi M, Terakawa T (2013) Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Sci Rep. 3:2641

    Article  Google Scholar 

  72. Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867. https://doi.org/10.3389/fpls.2017.01867

  73. Yoshida K, Sakamoto S, Kawai T, Kobayashi Y, Sato K, Ichinose Y, Yaoi K, Akiyoshi-Endo M, Sato H, Takamizo T, Ohme-Takagi M, Mitsuda N (2013) Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. Front Plant Sci. 4:383. https://doi.org/10.3389/fpls.2013.00383

    Article  Google Scholar 

  74. Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani K-i, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, Abe K, Miyao A, Hirochika H, Hattori T, Takeda S (2013) RICE SALT SENSITIVE3 forms a ternary complex with JAZ and Class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. Plant Cell 25:1709–1725

    Article  Google Scholar 

  75. Willander H et al (2012) High-resolution structure of a brichos domain and its implications for anti-amyloid chaperone activity on lung surfactant protein c. Proc Natl Acad Sci USA 109:2325–2329

    Article  Google Scholar 

  76. Allsop D, Mayes J (2014) Amyloid β-peptide and Alzheimer’s disease. Essays Biochem 56:99–110

    Article  Google Scholar 

  77. Cohen SIA et al (2015) A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol 22:207–213

    Article  Google Scholar 

  78. Genna V, Vidossich P, Ippoliti E, Carloni P, Vivo MD (2016) A self-activated mechanism for nucleic acid polymerization catalyzed by DNA/RNA polymerases. J Am Chem Soc 138:14592–14598

    Article  Google Scholar 

  79. Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pathik Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, P., Ghosh, S. (2021). Time Crystal Engineering in Catalytic Reaction Cycles. In: Bandyopadhyay, A., Ray, K. (eds) Rhythmic Oscillations in Proteins to Human Cognition. Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-7253-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7253-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7252-4

  • Online ISBN: 978-981-15-7253-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics