Skip to main content

Abstract

Colocasia esculenta is a traditional, inter-developed, and a tuberous crop harvested across the globe in tropical and subtropical areas. It correlates to the “Arecaceae” own family and is also called the “taro,” the name was given to this family’s tubers and roots. It is grown mainly as an affluent source of starch for the use of its palatable corms and leaves as an edible vegetable. Historically, taro was used owing to its antitumor, antimicrobial (antibacterial and antifungal), antidiabetic, antihepatotoxic, and antimelanogenic characteristics. Recent studies have documented the presence in the taro of bioactive compounds such as flavonoids, steroids, β-sitosterol, etc., which are confirmed for their health benefits. In the twenty-first century, where the consumer demands natural ingredients integrating food products, taro has various potential for use in the food industry, but after investigating its medicinal and pharmaceutical properties. This analysis will shed light on taro’s bioactive and nutraceutical compounds and the possible health-promoting implications thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anaeto M, Adighibe LC (2011) Cassava tuber meal as substitute for maize in layers ration. Babcock University, Nigeria, pp 153–156

    Google Scholar 

  • Babayemi OJ, Bamikole MA (2009) Nutrient value and in vitro gas production of African wild cocoyam (Colocasia esculentum). Afr J Food Agric Nutr Dev 9(1):593–607

    CAS  Google Scholar 

  • Bhagyashree RP, Hussein M (2011a) Anti-lipid peroxidative activity of Colocasia esculenta leaf juice against CCl4 and acetaminophen mediated cell damage. Int J Pharm Appl 2:141–149

    Google Scholar 

  • Bhagyashree RP, Hussein MA (2011b) Antihepatotoxic activity of Colocasia esculenta leaf juice. Int J Adv Biotechnol Res 2:296–304

    Google Scholar 

  • Bradbury JH, Nixon RW (1998) The acridity of raphides from the edible aroids. J Sci Food Agric 76(4):608–616

    Google Scholar 

  • Brown AC, Valiere A (2004) The medicinal uses of Poi. Nutr Clin Care 7:69–74

    PubMed  PubMed Central  Google Scholar 

  • Brown AC, Ibrahim SA, Song D (2016) Poi history, uses, and role in health. In: Watson RR, Preedy VR (eds) Fruits, vegetables, and herbs. Academic, Boston, pp 331–342

    Chapter  Google Scholar 

  • Cambie RC, Ferguson LR (2003) Potential functional foods in the traditional Maori diet. Mutat Res 523:109–117

    Article  PubMed  CAS  Google Scholar 

  • Chai W, Liebman M, Kynast-Gales S, Lamasery (2004) Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers. Am J Kidney Dis 44:1060–1069

    Article  PubMed  CAS  Google Scholar 

  • Chukwu KI, Udeala OK (2000) Binding effectiveness of Colocasia esculenta gum in poorly compressible drugs-paracetamol and metronidazole tablet formulations. Boll Chim Farm 139:89–97

    PubMed  CAS  Google Scholar 

  • Dastidar SG (2009) Colocasia esculenta: an account of its ethno botany and potentials. Masters thesis, Master of Arts, The University of Texas at Austin

    Google Scholar 

  • Del Rosario AV, Lorenz K (1999) Pasta products containing taro (Colocasia esculenta L. Schott) and chaya (Cnidoscolus Chayamansa L. Mcvaugh). J Food Process Preserv 23:1–20

    Article  Google Scholar 

  • Diwedi P, Diwedi J, Patel D, Desai S, Meshram D (2016) Phytochemical analysis and assessment of in vitro urolithiatic activity of Colocasia leaves. J Med Plant Stud 4(6):43–47

    Google Scholar 

  • Dnyaneshwar PS, Pravinkumar DP, Gurunath VM, Akashya KS (2018) Potential use of dragon fruit and taro leaves as functional food: a review. Eur J Eng Sci Technol 1(1):10–20

    Google Scholar 

  • FAO (1990) Roots, tubers, plantains and bananas in human nutrition, Food and nutrition series, vol 24. Food and Agriculture Organization, Rome, pp 222–245

    Google Scholar 

  • FAO (1999) Taro cultivation in Asia and the Pacific. Accessed from: http://ebooks.lib.ntu.edu.tw/1_file/FAO/67652/ac450e00.pdf. Accessed 25th Apr 2020

  • FAO (2010) Protein source for the animal feed industry. Animal production and Health. Expert consultation and workshop, Bangkok, vol 4, pp 26–28

    Google Scholar 

  • Ferguson EL, Darmon N (2007) Traditional foods vs. manufactured baby foods. In: Agostoni C, Brunser O (eds) Issues in complementary feeding. Nestle nutrition workshop series pediatric program 60. Nestec Ltd., Vevey/S. Karger/Basel, pp 43–63

    Google Scholar 

  • Gurpreet A, Karan M, Inderbir S (2011) Formulation and evaluation of mucoadhesive matrix tablets of Taro gum: optimization using response surface methodology. Poli Medy 41:23–34

    Google Scholar 

  • Hang DT, Preston TR (2009) Taro (Colocaciaesculenta) leaves as a protein source in Central Viet Nam. Livest Res Rural Dev 21:222–234

    Google Scholar 

  • Heuzé V, Tran G, Hassoun P, Renaudeau D (2015) Taro (Colocasia esculenta). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. Accessed from: https://www.feedipedia.org/node/537. Accessed 20th Apr 2020

  • Huang AS, Tanudjaja L (1992) Application of anion-exchange high performance liquid chromatography in determining oxalates in taro (Colocasia esculenta) corms. J Agric Food Chem 40:2123–2126

    Article  CAS  Google Scholar 

  • Iwashina T, Konishi T, Takayama A, Fukada M, Ootani S (1999) Isolation and identification of the flavanoids in the leaves of taro. Ann Tsukuba Bot Gard 18:71–74

    Google Scholar 

  • Jirarart T, Sukruedee A, Persuade P (2006) Chemical and physical properties of flour extracted from taro (Colocasia esculenta) grown in different regions of Thailand. Sci Asia 32:279–284

    Article  CAS  Google Scholar 

  • Kaushal P, Kumar V, Sharma HK (2013) Utilization of taro (Colocasia esculenta): a review. J Food Sci Technol 52(1):27–40

    Article  CAS  Google Scholar 

  • Kowalczyk E, Kopff A, Fijalkowski P, Niedworok J, Blaszczyk J et al (2003) Effects of anthocyanins on selected biochemical parameters in rats exposed to cadmium. Acta Biochim Pol 50:543–548

    Article  PubMed  CAS  Google Scholar 

  • Kubde MS, Khadabadi SS, Farooqui IA, Deore SL (2010) In-vitro anthelmintic activity of Colocasia esculenta. Der Pharm Lett 2(2):82–85

    Google Scholar 

  • Kumawat NS, Chaudhari SP, Wani NS, Deshmukh TA, Patil VR (2010) Antidiabetic activity of ethanol extract of Colocasia esculenta leaves in alloxan induced diabetic rats. Int J Pharm Technol Res 2:1246–1249

    Google Scholar 

  • Kundu N, Campbell P, Hampton B, Lin CY, Ma X et al (2012) Antimetastatic activity isolated from Colocasia esculenta (Taro). Anti-Cancer Drugs 23:200–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim TK (2015) Colocasia esculenta. In: Edible medicinal and nonmedicinal plants, vol 9, 1st edn. Springer Netherland, Dordrecht, pp 54–492

    Google Scholar 

  • Lin H, Huang AS (1993) Chemical composition and some physical properties of water-soluble gum in taro (Colocasia esculenta). Food Chem 48:403–409

    Article  CAS  Google Scholar 

  • Loy TH, Spriggs M, Wickler S (1992) Direct evidence for human use of plants 28,000 years ago: starch residues on stone artifacts from the northern Solomon Islands. Antiquity 66:898–912

    Article  Google Scholar 

  • Mengane SK (2015) Antifungal activity of the crude extracts of Colocasia esculenta leaves in vitro on plant pathogenic fungi. Int Res J Pharm 6(10):713–714

    Article  CAS  Google Scholar 

  • Nakade DB, Mahesh SK, Kiran NP, Vinayak SM (2013) Phytochemical screening and antibacterial activity of western region wild leaf Colocasia esculenta. Int Res J Biol Sci 2(10):18–21

    Google Scholar 

  • Nip WK (1997) Taro: processing vegetable and technology. Technomic Publishing Co. Inc, Pennsylvania, pp 355–387

    Google Scholar 

  • Noda Y, Kaneyuki T, Mori A, Packer L (2002) Antioxidant activities of pomegranate fruitextract and its anthocyanidins: delphinidin, cyanidin and pelargonidin. J Agric Food Chem 50:166–171

    Article  PubMed  CAS  Google Scholar 

  • Obadina AA, Hannah IO (2016) Quality changes in cocoyam flours during storage. J Food Sci Nutr 4(6):818–827

    CAS  Google Scholar 

  • Onwueme I (1999) Taro cultivation in Asia and the Pacific. Published in RAP Publication 1999/16. Published by Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok

    Google Scholar 

  • Oyindamola OO, Adewale O, Obadina P, Sobukola, Mojisola O (2016) Effects of processing and storage conditions of cocoyam strips on the quality of fries. J Food Sci Nutr 4(6):906–914

    Google Scholar 

  • Patel DK, Kumar R, Laloo D, Hemalatha S (2012) Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed 2:411–420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pheng BB, Khieu TR, Preston B (2008) Effect of Taro (Colocasia esculenta) leaf silage as replacement for fish meal on feed intake and growth performance of crossbred pigs. Livest Res Rural Dev. Accessed from: http://www.lrrd.org/lrrd20/supplement/bunt3.htm. Accessed on 6th June 2020

  • Prajapati RM, Kalariya R, Umbarkar S, Parmar N (2011) Colocasia esculenta: a potent indigenous plant. Int Nutr Pharmacol Neurol Dis 1(2):90–96

    Article  CAS  Google Scholar 

  • Purseglove JW (1972) Tropical crops: monocotyledons. Halsted Press Division, Wiley, New York

    Google Scholar 

  • Rashmi DR, Raghu N, Gopenath TS et al (2018) Taro (Colocasia esculenta): an overview. J Med Plant Stud 6(4):156–161

    Google Scholar 

  • Reyad-ul-Ferdous M, Arman MSI, TanvirSumi MMI et al (2015) Biologically potential for pharmacological and phytochemicals of medicinal plants of Colocasia esculenta: a comprehensive review. Am J Clin Exp Med 3(5–1):7–11

    Article  CAS  Google Scholar 

  • SafoKantaka O (2004) Colocasia esculenta (L.) Schott. Record from protabase. In: Grubben GJH, Denton OA (eds) PROTA (Plant Resources of Tropical Africa/Ressourcesvégétales de l’Afriquetropicale). PROTA Foundation, Wageningen

    Google Scholar 

  • Saldanha LG (1995) Fiber in the diet of U. S. children: results of national surveys. Pediatrics 7(96):994–996

    Google Scholar 

  • Savage GPL, Mảrtenson, Sedcole JR (2009) Composition of oxalate in baked taro (Colocasia esculenta var. Schott) leaves cooked alone or with addition of cow’s milk or coconut milk. J Food Compos Anal 22:83–86

    Article  CAS  Google Scholar 

  • Shah BN, Nayak BS, Bhatt SP, Jalalpure SS, Sheth AK (2007) Нe antiinflammator activity of the leaves of Calocasia esculenta. Sau Pharm J 15:3–4

    Google Scholar 

  • Shekade DP, Patil PD, Mote GV, Sahoo AK (2018) Potential use of dragon fruit and Taro leaves as functional food: a review. Eur J Eng Sci Technol 1(1):10–20

    Google Scholar 

  • Sheth AK (2005) The herbs of ayurveda. AK Sheth Publishers, Ahmedabad

    Google Scholar 

  • Singh B, Namrata LK, Dwivedi SC (2011) Antibacterial and antifungal activity of Colocasia esculenta aqueous extract: an edible plant. J Pharm Res 4:1459–1460

    Google Scholar 

  • Singh D, Jackson D, Hunter D, Fullerton R, Lebot V, Tailor M, Josef T, Okpul T, Tyson J (2012) Taro leaf blight-a threat to food security. Open Access Agric 2:182–203

    Google Scholar 

  • Soudy ID, Delatour P, Grancher D (2010) Effects of traditional soaking on the nutritional profile of taro flour (Colocasia esculenta L. Schott) produced in Chad. Revue MédVét 1:37–42

    Google Scholar 

  • Soumya M, Chowdary YA, Swapna VN, Prathyusha ND, Geethika R et al (2014) Preparation and optimization of sustained release matrix tablets of metoprolol succinate and taro gum using response surface methodology. Asian J Pharm 8:51–57

    Article  CAS  Google Scholar 

  • Suhasini AW, Malleshi NG (2003) Nutritional and carbohydrate characteristics of wheat and chickpea based weaning foods. Int J Food Sci Nutr 54(3):181–187

    Article  PubMed  CAS  Google Scholar 

  • Temesgen M (2013) Nutritional status of Ethiopian weaning and complementary foods: a review. Open Access Sci Rep 2:621. https://doi.org/10.4172/scientificreports.62

    Article  Google Scholar 

  • Tessema MT, Belachew EG (2013) Feeding patterns and stunting during early childhood in rural communities of Sidama, South Ethiopia. Pan Afr Med J 14:897–945

    Google Scholar 

  • Wagner H (1985) New plant phenolics of pharmaceutical interest. In: Van Sumere CF, Lea PJ (eds) Annual proceedings of phytochemistry society in Europe, The biochemistry of plant phenolics. Clarendon Press, Oxford, pp 25–401

    Google Scholar 

  • Yang AH, Yeh KW (2005) Molecular cloning, recombinant gene expression and antifungal activity of cystain from taro. Planta Med 22:333–341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Jan, R., Kaur, R., Riar, C.S. (2020). Taro (Colocasia esculenta). In: Nayik, G.A., Gull, A. (eds) Antioxidants in Vegetables and Nuts - Properties and Health Benefits. Springer, Singapore. https://doi.org/10.1007/978-981-15-7470-2_18

Download citation

Publish with us

Policies and ethics