Skip to main content

Whole-Genome Sequencing of Plants: Past, Present, and Future

  • Chapter
  • First Online:
Plant Genomics for Sustainable Agriculture

Abstract

Advances in analytical chemistry, as well as the constant introduction of novel analytical chemistry approaches, are altering genomics at a higher level. The cost of sequencing has dropped from US$100 million for the first plant genome Arabidopsis thaliana to just US$1000 as a result of this rapid progress in the genomics era. Without a doubt, this will speed up and lower the cost of future sequencing technologies. This chapter highlights the major advances in agriculture. To add, this also understands past, present, and future of in era of plant genomics. This chapter highlights the genome databases, tools that are mostly used over the globe. We proposed as a futuristic approach that an altogether comprehensive genome database is to be created to host all the plant genomes to speed up the plant genomic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Alkan C, Sajjadian S, Eichler EE (2011) Limitations of next-generation genome sequence assembly. Nat Methods 8:61–65

    Article  CAS  PubMed  Google Scholar 

  • An F, Fan J, Li J, Li QX, Li K, Zhu W, Wen F, Carvalho LJCB, Chen S (2014) Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes. PLoS One 9(4):e85991

    Article  PubMed  PubMed Central  Google Scholar 

  • https://pgdbj.jp/plantdb/plantdb.html. Accessed 26 Jun 2021

  • http://asia.ensembl.org/index.html. Accessed 26 Jun 2021

  • https://cvalues.science.kew.org/. Accessed 26 Jun 2021

  • https://www.plantrdnadatabase.com/. Accessed 26 Jun 2021

  • Asamizu E, Ichihara H, Nakaya A et al (2014) Plant Genome DataBase Japan (PGDBj): a portal website for the integration of plant genome-related databases. Plant Cell Physiol 55(1):e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346):93–97

    Article  CAS  PubMed  Google Scholar 

  • Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6:914–920

    Article  PubMed  Google Scholar 

  • Bennett RA, Lynch JM (1981) Colonization potential of bacteria in the rhizosphere. Curr Microbiol 6(3):137–138

    Article  Google Scholar 

  • Berkman PJ, Bundock PC, Casu RE, Henry RJ, Rae AL, Aitken KS (2014) A survey sequence comparison of saccharum genotypes reveals allelic diversity differences. Trop Plant Biol 7:71–83

    Article  Google Scholar 

  • Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33(6):623–630

    Article  CAS  PubMed  Google Scholar 

  • Bevan M, Walsh S (2005) The Arabidopsis genome: a foundation for plant research. Genome Res 15(12):1632–1642

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Goswami MP, Bhattacharyya LH (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytology 8:26–41

    Article  CAS  Google Scholar 

  • Bhattacharyya C, Bakshi U, Mallick I, Mukherji S, Bera B, Ghosh A (2017) Genome-guided insights into the plant growth promotion capabilities of the physiologically versatile Bacillus aryabhattai strain AB211. Front Microbiol 8:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Bird KA, VanBuren R, Puzey JR, Edger PP (2018) The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol 220(1):87–93

    Article  PubMed  Google Scholar 

  • Biselli C, Urso S, Bernardo L, Tondelli A, Tacconi G, Martino V, Grando S, Valè G (2010) Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theor Appl Genet 120(3):1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Blake VC, Birkett C, Matthews DE, Hane DL, Bradbury P, Jannink J (2016) The Triticeae toolbox: combining phenotype and genotype data to advance small-grains breeding. Plant Genome 9(2). https://doi.org/10.3835/plantgenome2014.12.0099

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgeois Y, Stritt C, Walser JC, Gordon SP, Vogel JP, Roulin AC (2018) Genome-wide scans of selection highlight the impact of biotic and abiotic constraints in natural populations of the model grass Brachypodium distachyon. Plant J 96(2):438–451

    Article  CAS  PubMed  Google Scholar 

  • Brozynska M, Omar ES, Furtado A, Crayn D, Simon B, Ishikawa R, Henry RJ (2014) Chloroplast genome of Novel rice germplasm identified in Northern Australia. Trop Plant Biol 7(3-4):111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ (2018) Next-generation machine learning for biological networks. Cell 173(7):1581–1592

    Article  CAS  PubMed  Google Scholar 

  • Campbell MS, Law MY, Holt C, Stein JC, Moghe GD, Hufnagel DE et al (2014) MAKER-P: a tool kit for the rapid creation management and quality control of plant genome annotations. Plant Physiol 164(2):513–524

    Article  CAS  PubMed  Google Scholar 

  • Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT (2018) Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 47(5):1652–1704

    Article  CAS  PubMed  Google Scholar 

  • Chen DY, Swerdlow HP, Harke HR, Zhang JZ, Dovichi NJ (1991) Low-cost, high-sensitivity laserinduced fluorescence detection for DNA sequencing by capillary gel electrophoresis. J Chromatogr A 559(1-2):237–246

    Article  CAS  Google Scholar 

  • Chen KY, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643645

    Google Scholar 

  • Chen G, Liu Y, Ma J, Zheng Z, Wei Y, McIntyre CL, Zheng YL, Liu C (2013) A Novel and major quantitative trait locus for Fusarium Crown rot resistance in a genotype of Wild Barley (Hordeum spontaneum L.). PLoS One 8(3):e58040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Dong W, Zhang J, Guo X, Chen J, Wang Z, Lin Z, Tang H, Zhang L (2018) The sequenced angiosperm genomes and genome databases. Front Plant Sci 9:418

    Article  PubMed  PubMed Central  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6(11):836–846

    Article  CAS  PubMed  Google Scholar 

  • Compaan B, Ruttink T, Albrecht C, Meeley R, Bisseling T, Franssen H (2003) Identification and characterization of a Zea mays line carrying a transposon-tagged ENOD40. Biochim Biophys Acta 1629:84–91

    Article  CAS  PubMed  Google Scholar 

  • Cook DE, Valle-Inclan JE, Pajoro A, Rovenich H, Thomma BPHJ, Faino L (2019) Long-read annotation: automated eukaryotic genome annotation based on long-read cDNA sequencing. Plant Physiol 179(1):38–54

    Article  CAS  PubMed  Google Scholar 

  • Corneillie S, De Storme N, Van Acker R, Fangel JU, De Bruyne M et al (2019) Polyploidy affects plant growth and alters cell wall composition. Plant Physiol 179(1):74–87

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Giraud T, Smulders MJM, Roldán-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Tends Genet 30(2):57–65

    Article  CAS  Google Scholar 

  • Das A, Ravinath R, Shilpa BR, Rohith BS, Goyal AK, Ramesh N et al (2021) Microbiomics and cloud-based analytics advance sustainable soil management Frontiers in Bioscience. Landmark 26:478–495

    Article  CAS  Google Scholar 

  • De Storme N, Geelen D (2013) Sexual polyploidization in plants: cytological mechanisms and molecular regulation. New Phytol 198(3):670–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Deery DM, Rebetzke GJ, Jimenez-Berni JA, James RA, Condon AG et al (2016) Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front Plant Sci 7:1808

    Article  PubMed  PubMed Central  Google Scholar 

  • Demirci S, Peters SA, de Ridder D, van Dijk ADJ (2018) DNA sequence and shape are predictive for meiotic crossovers throughout the plant kingdom. Plant J. https://doi.org/10.1111/tpj.13979

  • Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM et al (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 6(1):225

    Article  CAS  Google Scholar 

  • Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345(6201):1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Diederichs T, Pugh G, Dorey A, Xing Y, Burns JR, Hung Nguyen Q, Tornow M, Tampé R, Howorka S (2019) Synthetic protein-conductive membrane nanopores built with DNA. Nat Commun 10(1):5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C et al (2012) A long noncoding RNA regulates photoperiod-sensitive male sterilityan essential component of hybrid rice. Proc Natl Acad Sci U S A 109(7):2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do H, Than K, Larmande P (2018) Evaluating named-entity recognition approaches in plant molecular biology. In: Kaenampornpan M, Malaka R, Nguyen D, Schwind N (eds) Multi-disciplinary trends in artificial intelligence. MIWAI 2018, Lecture notes in computer science, vol 11248. Springer, Cham. https://doi.org/10.1007/978-3-030-03014-8_19

    Chapter  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316(5833):1862–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvick J, Fu A, Muppirala U, Shabarwal M, Wilkerson MD, Lawrence CJ, Lushbourg C, Brendel V (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36(Database issue):D959–D965

    CAS  PubMed  Google Scholar 

  • Edger PP, Smith R, McKain MR, Cooley AM, Vallejo-Marin M, Yuan Y et al (2017) Subgenome dominance in an interspecific hybrid synthetic allopolyploid and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29(9):2150–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B, Masson G et al (2017) Graphtyper enables population-scale genotyping using pangenome graphs. Nat Genet 49:1654–1660

    Article  CAS  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  CAS  PubMed  Google Scholar 

  • Feldmann KA, Goff SA (2014) The first plant genome sequence—Arabidopsis thaliana. Adv Bot Res 69:91–117

    Article  CAS  Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci U S A 115(6):E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Van Der Knaap E, Cong B et al (2000) fw22: a quantitative trait locus key to the evolution of tomato fruit size. Science 289(5476):85–88

    Article  CAS  PubMed  Google Scholar 

  • Gaebelein R, Schiessl SV, Samans B, Batley J, Mason AS (2019) Inherited allelic variants and novel karyotype changes influence fertility and genome stability in Brassica allohexaploids. New Phytol 223(2):965–978

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Debnath S, Nasim Ali M (2014) Genomic profile of the plants with pharmaceutical value. 3 Biotech 4(6):563–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X, Zhang J, Wei Z, Hakonarson H (2018a) DeepPolyA: a convolutional neural network approach for polyadenylation site prediction. IEEE Access 6:24340–24349

    Article  Google Scholar 

  • Gao H, Wang Y, Li W, Gu Y, Lai Y, Bi Y, He C (2018b) Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. J Exp Bot 69(21):5089–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA et al (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51(6):1044–1051

    Article  CAS  PubMed  Google Scholar 

  • Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crop Food 8(1):1–12

    Article  Google Scholar 

  • Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S (2018) An explainable deep machine vision framework for plant stress phenotyping. Proc Natl Acad Sci U S A 115(18):4613–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108(4):1513–1518

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Crute IR, Haddad L, Muir JF, Nisbett N, Lawrence D, Pretty J et al (2010) The future of the global food system. Philos Trans R Soc Lond B Biol Sci 365(1554):2941–2957

    Article  Google Scholar 

  • Golicz AA, Bayer PE, Barker GC, Edger PP, Kim HR, Martinez PA et al (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golicz AA, Bhalla PL, Singh MB (2018) MCRiceRepGP: a framework for the identification of genes associated with sexual reproduction in rice. Plant J 96(1):188–202

    Article  CAS  PubMed  Google Scholar 

  • Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D (2020) Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet 36(2):132–145

    Article  CAS  PubMed  Google Scholar 

  • Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D et al (2017) Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun 8(1):2184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2009) SoyBase the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38(Database issue):D843–D846

    PubMed  PubMed Central  Google Scholar 

  • Gultyaev AP, Roussis A (2007) Identification of conserved secondary structures and expansion segments in enod40 RNAs reveals new enod40 homologues in plants. Nucleic Acids Res 35(9):3144–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haggag WMFAH, Habbasha ES (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharma Res 7(10):882–889

    Google Scholar 

  • Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–109

    Article  CAS  PubMed  Google Scholar 

  • Hassani-Pak K, Rawlings C (2017) Knowledge discovery in biological databases for revealing candidate genes linked to complex phenotypes. J Integr 14(1):20160002

    Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331(6013):76–79

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA et al (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213:64

    Article  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9(5):e97047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoshino A, Jayakumar V, Nitasaka E, Toyoda A, Noguchi H, Itoh T et al (2016) Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nat Commun 7:13295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Dong H, Zhou D, Li M, Liu Y, Zhang F, Feng Y et al (2018) Systematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa. Plant J 96(1):203–222

    Article  CAS  PubMed  Google Scholar 

  • Jansson JK, Hofmockel KS (2018) The soil microbiome — from metagenomics to metaphenomics. Curr Opin Microbiol 43:162–168

    Article  CAS  PubMed  Google Scholar 

  • Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H et al (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588(7837):284–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431(7008):569–573

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Paterson AH (2014) Polyploidy-associated genome modifications during land plant evolution. Philos Trans R Soc Lond B Biol Sci 369(1648):20130355

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Kalladan R, Worch S, Rolletschek H, Harshavardhan VT, Kuntze L, Seiler C et al (2013) Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breeding 32:71–90

    Article  Google Scholar 

  • Kambara H, Takahashi S (1993) Multiple-sheathflow capillary array DNA analyser. Nature 361:565–566

    Article  CAS  PubMed  Google Scholar 

  • Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A 111(11):4001–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klasberg S, Bitard-Feildel T, Mallet L (2016) Computational identification of novel genes: current and future perspectives. Bioinform Biol Insights 10:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori K, Perovic D et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A 104(4):1424–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren S, Schatz MC, Walenz BP, Martin J, Howard JT et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouchi H, Takane KI, So RB, Ladha JK, Reddy PM (1999) Rice ENOD40: isolation and expression analysis in rice and transgenic soybean root nodules. Plant J 18(2):121–129

    Article  CAS  PubMed  Google Scholar 

  • Lai K, Berkman PJ, Lorenc MT, Duran C, Smits L, Manoli S et al (2012) WheatGenome info: an integrated database and portal for wheat genome information. Plant Cell Physiol 53(2):e2

    Article  CAS  PubMed  Google Scholar 

  • Lakew B, Eglinton J, Henry RJ, Baum M, Grando S, Ceccarelli S (2011) The potential contribution of wild barley (Hordeum vulgare ssp. spontaneum) germplasm to drought tolerance of cultivated barley (H. vulgare ssp. vulgare). Field Crops Res 120(1):161–168

    Article  Google Scholar 

  • Li WT, Huang X, Wang JR, Chen GY, Nevo E, Zheng YL, Wei YM (2010) Genetic analysis and ecological association of Hina genes based on single nucleotide polymorphisms (SNPs) in wild barley Hordeum spontaneum. Hereditas 147(1):18–26

    Article  PubMed  Google Scholar 

  • Li C, Wang A, Ma X, Pourkheirandish M, Sakuma S, Wang N, Ning S, Nevo E, Nawrath C, Komatsuda T, Chen G (2013) Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity. Breeding Sci 126(3):637–646

    CAS  Google Scholar 

  • Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32(10):1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41(2):63–68

    Article  CAS  PubMed  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Wang X, Youmans DT, Cech TR (2017) How do lncRNAs regulate transcription? Sci Adv 3(9):eaao2110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu H, Giordano F, Ning Z (2016) Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinform 14(5):265–279

    Article  Google Scholar 

  • Mansueto L, Fuentes RR, Borja FN, Detras J, Abrio-Santos JM, Chebotarov D et al (2017) Rice SNP-seek database update: new SNPs indels and queries. Nucleic Acids Res 45(Database issue):D1075–D1081

    Article  CAS  PubMed  Google Scholar 

  • Matteoli FP, Passarelli-Araujo H, Reis RJA, Da Rocha LO et al (2018) Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics 19(1):750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mejía-Guerra MK, Buckler ES (2019) A k-mer grammar analysis to uncover maize regulatory architecture. BMC Plant Biol 19(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Menges M, De Jager SM, Gruissem W, Murray JAH (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41(4):546–566

    Article  CAS  PubMed  Google Scholar 

  • Michael TP, VanBuren R (2015) Progress challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    Article  CAS  PubMed  Google Scholar 

  • Miglani GS (2017) Genome editing in crop improvement: present scenario and future prospects. J Crop Improv 31:453–459

    Article  CAS  Google Scholar 

  • Milner SG, Jost M, Taketa S, Mazón ER, Himmelbach A, Oppermann M et al (2019) Genebank genomics highlights the diversity of a global barley collection. Nature Genet 51:319–326

    Article  CAS  PubMed  Google Scholar 

  • Montes JM, Melchinger AE (2016) Domestication and breeding of Jatropha curcas L. Trends Plant Sci 21(12):1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3):969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-López M, García-Pérez JL (2010) DNA transposons: nature and applications in genomics. Curr Genomics 11(2):115–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano K, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, Ohki S, Shinzato M, Minami M, Nakanishi T, Teruya K, Satou K, Hirano T (2017) Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum Cell 30(3):149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ormeño-Orrillo E, Aguilar-Cuba Y, Zúñiga-Dávila D (2018) Draft genome sequence of Rhizobium sophoriradicis H4 a nitrogenfixing bacterium associated with the leguminous plant Phaseolus vulgaris on the coast of Peru. Genome Announc 6(21):e00241–e00218

    Article  PubMed  PubMed Central  Google Scholar 

  • Pakniyat H, Namayandeh A (2007) Salt tolerance associations with RAPD markers in Hordeum vulgare L and H spontaneum C Koch. Pak J Biol Sci. https://doi.org/10.3923/pjbs200713171320

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52(4):413–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ, Jiang K, Schatz MC, Lippman ZB (2012) Rate of meristem maturation determines inflorescence architecture in tomato. Proc Natl Acad Sci U S A 109(2):639–644

    Article  CAS  PubMed  Google Scholar 

  • Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23(9):1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Pellicer J, Leitch IJ (2019) The Plant DNA C-values database (release 71): an updated online repository of plant genome size data for comparative studies. New Phytol 226(2):301–305

    Article  PubMed  Google Scholar 

  • Poiré R, Chochois V, Sirault XRR, Vogel JP, Watt M, Furbank RT (2014) Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in Brachypodium distachyon. J Integr Plant Biol 56(8):781–796

    Article  PubMed  CAS  Google Scholar 

  • Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M et al (2015) Evolution of the grain dispersal system in Barley. Cell 162(3):527–539

    Article  CAS  PubMed  Google Scholar 

  • Pourkheirandish M, Dai F, Sakuma S, Kanamori H, Distelfeld A et al (2018) On the origin of the non-brittle rachis trait of domesticated einkorn wheat. Front Plant Sci 8:2031

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB (2020) Global role of crop genomics in the face of climate change. Front Plant Sci 11:922

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasannakumar MK, Netravathi LM, Mahesh HB et al (2021) Comparative metagenomic analysis of rice soil samples revealed the diverse microbial population and biocontrol organisms against plant pathogenic fungus Magnaporthe oryzae. 3 Biotech 11:245. https://doi.org/10.1007/s13205-021-02783-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pray L (2008) Discovery of DNA structure and function: Watson and Crick. Nat Educ 1(1):100

    Google Scholar 

  • Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways mechanisms and rates of polyploid formation in flowering plants. Annu Rev Ecol Systemat 29:467–501

    Article  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts L (1987) New sequencers to take on the genome. Science 238(4825):271–273

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi M, Uhlén M, Nyrén PA (1998) Sequencing method based on real-time pyrophosphate. Science 281(5375):363–365

    Article  CAS  PubMed  Google Scholar 

  • Salman-Minkov A, Sabath N, Mayrose I (2016) Whole-genome duplication as a key factor in crop domestication. Nat Plants 2:16115

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satterthwaite D, McGranahan G, Tacoli C (2010) Urbanization and its implications for food and farming. Philos Trans R Soc Lond B Biol Sci 365:2809–2820

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheben A, Edwards D (2018) Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol 19:178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schellenberg MJ, Ritchie DB, MacMillan AM (2008) Pre-mRNA splicing: a complex picture in higher definition. Trends Biochem Sci 33(6):243–246

    Article  CAS  PubMed  Google Scholar 

  • Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117(7):1093–1106

    Article  PubMed  Google Scholar 

  • Schrider DR, Kern AD (2018) Supervised machine learning for population genetics: a new paradigm. Trends Genet 34(4):301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shariati VJ, Malboobi MA, Tabrizi Z, Tavakol E, Owilia P, Safari M (2017) Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5. Sci Rep 7(1):15610

    Article  PubMed  CAS  Google Scholar 

  • Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M, Langridge P, Collins NC (2010) HvNax3: a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genomics 10(2):277–291

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Ann Rev Phytopathol 37:473–491

    Article  CAS  Google Scholar 

  • Sohn JI, Nam JW (2018) The present and future of de novo whole-genome assembly. Brief Bioinform 19(1):23–40

    CAS  PubMed  Google Scholar 

  • Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S et al (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6(1):34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M et al (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47(12):1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Souza GM, Berges H, Bocs S, Casu R, D’Hont A, Ferreira JE, Henry R, Ming R et al (2011) The sugarcane genome challenge: strategies for sequencing a highly complex genome. Tropical Plant Biol 4:145–156

    Article  CAS  Google Scholar 

  • Spannagl M, Noubibou O, Haase D, Yang L, Gundlach H, Hindemitt T, Klee K, Haberer G, Schoof H, Mayer KF (2007a) MIPSPlantsDB—plant database resource for integrative and comparative plant genome research. Nucleic Acids Res 35(Suppl. 1):D834–D840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spannagl M, Noubibou O, Haase D, Yang L, Gundlach H, Hindemitt T et al (2007b) MIPSPlantsDB—plant database resource for integrative and comparative plant genome research. Nucleic Acids Res 35(Database issue):D834–D840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staňková H, Hastie AR, Chan S, Vrána J, Tulpová Z, Kubaláková M et al (2016) BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol 14(7):1523–1531

    Article  CAS  Google Scholar 

  • Sun C, Hu Z, Zheng T, Lu K, Zhao Y, Wang W, Shi J, Wang C et al (2017) RPAN: rice pan-genome browser for ∼3000 rice genomes. Nucleic Acids Res 45(2):597–605

    Article  CAS  PubMed  Google Scholar 

  • Sysoeva M, Markovskaya E, Shibaeva T (2010) Plants under continuous light: a review. Plant Stress 4(1):5–17

    Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186(1):102–112

    Article  CAS  PubMed  Google Scholar 

  • Tamayo-Ordóñez MC, Espinosa-Barrera LA, Tamayo-Ordóñez YJ, Ayil-Gutiérrez B, Sánchez-Teyer LF (2016) Advances and perspectives in the generation of polyploid plant species. Euphytica 209:1–22

    Article  Google Scholar 

  • Tank JG, Thaker VS (2011) Cyclin dependent kinases and their role in regulation of plant cell cycle. Biol Plantarum 55:201–212

    Article  CAS  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102(39):13950–13955. https://doi.org/10.1073/pnas.0506758102. Epub 2005 Sep 19. Erratum in: Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518–522

    Article  CAS  PubMed  Google Scholar 

  • Tran TT, Choi JW, Le TTH, Kim JW (2019) A comparative study of deep CNN in forecasting and classifying the macronutrient deficiencies on development of tomato plant. Appl Sci (Switzerland) 9(8):1601

    CAS  Google Scholar 

  • Tshikhudo PP, Ntushelo K, Mudau FN, Salehi B, Sharifi-Rad M, Martins N et al (2019) Understanding Camellia sinensis using Omics technologies along with endophytic bacteria and environmental roles on metabolism: a review. Appl Sci (Switzerland) 9(2):281

    CAS  Google Scholar 

  • Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y et al (2014) Genome duplication improves rice root resistance to salt stress. Rice (N.Y). 7(1):15

    Article  PubMed Central  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usade B, Tohge T, Scossa F, Sierro N, Schmidt M et al (2018) The genome and metabolome of the tobacco tree, Nicotiana glauca: a potential renewable feedstock for the bioeconomy. In: bioRxiv. https://doi.org/10.1101/351429

    Chapter  Google Scholar 

  • Usha T, Kumar HPP, Panda P, Goyal AK, Sukhralia S, Afreen S, Shanmugarajan D, Middha SK (2021) Deciphering the animal genomics using bioinformatics approaches. In: Modal S, Lakhan S (eds) Advances in animal genomics, pp 281–297. ISBN 9780128205952

    Chapter  Google Scholar 

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14(12):680–688

    Article  PubMed  CAS  Google Scholar 

  • Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V et al (2019) A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178(5):1260–1272.e14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Rhijn P, Fang Y, Galili S, Shaul O, Atzmon N, Wininger S et al (1997) Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved. Proc Natl Acad Sci U S A 94(10):5467–5472

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanburen R, Bryant D, Edger PP, Tang H, Burgess D, Challabathula D et al (2015) Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature 527(7579):508–511

    Article  CAS  PubMed  Google Scholar 

  • Vitales D, Fernández P, Garnatje T, Garcia S (2019) Progress in the study of genome size evolution in Asteraceae: analysis of the last update. Database 2019:baz098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588(7837):277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Liu Y, Li D, Li L, Zhang Q, Wang S, Huang H (2017) Identification of circular rnas in kiwifruit and their species-specific response to bacterial canker pathogen invasion. Front Plant Sci 8:413

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Yang Y, Jin L, Ling X, Liu T, Chen T et al (2018a) Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC Plant Biol 18(1):104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z et al (2018b) Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 50(10):1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Luo X, Sun F, Hu J, Zha X, Su W, Yang J (2018c) Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice. Nat Commun 9(1):3516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Washburn JD, Mejia-Guerra MK, Ramstein G, Kremling KA, Valluru R et al (2019) Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence. Proc Natl Acad Sci U S A 116(12):5542–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23–29

    Article  PubMed  Google Scholar 

  • Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189):872–876

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Wang F, Qin H, Chen G, Eviatar N, Fahima T, Cheng J (2011) Natural variation in grain selenium concentration of Wild Barley, Hordeum spontaneum, populations from Israel. Biol Trace Elem Res 142(3):773–786

    Article  CAS  PubMed  Google Scholar 

  • Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15(12):512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X et al (2018) Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet 50(11):1565–1573. https://doi.org/10.1038/s41588-018-0237-2. Epub 2018 Oct 8. Erratum in: Nat Genet 50(12):1754

    Article  CAS  PubMed  Google Scholar 

  • Zhang LN, Wang DC, Hu Q, Dai XQ, Xie YS, Li Q, Liu HM, Guo JH (2019) Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front Microbiol 10:1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q et al (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50(8):1196

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Zhu Y, Zhao J, Fang Z, Wang S, Yin J, Chu Z, Ma D (2018) Transcriptome-wide identification and characterization of potato circular RNAs in response to pectobacterium carotovorum subspecies brasiliense infection. Int J Mol Sci 19(1):71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The DBT-BIF Facility, DST-FIST Facility for PG Level O, Government of India, and the BISEP programme, run by the Government of Karnataka, India, at MLACW contributed to this research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors state that there were no commercial or financial relationships that may be seen as a potential conflict of interest during the research.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Usha, T. et al. (2022). Whole-Genome Sequencing of Plants: Past, Present, and Future. In: Singh, R.L., Mondal, S., Parihar, A., Singh, P.K. (eds) Plant Genomics for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-16-6974-3_8

Download citation

Publish with us

Policies and ethics