Skip to main content

Part of the book series: Indian Statistical Institute Series ((INSIS))

  • 405 Accesses

Abstract

In this chapter, we introduce the concept of biorthogonal wavelets in a local field K of positive characteristic. We show that if \(\varphi \) and \(\tilde{\varphi }\) are the scaling functions of two multiresolution analyses (MRAs) such that their translates are biorthogonal, then the associated families of wavelets are also biorthogonal. Under mild decay conditions on the scaling functions and the wavelets, we also show that the wavelets generate Riesz bases for \(L^2(K)\). First, we find necessary and sufficient conditions for the translates of a function to form a Riesz basis for their closed linear span. We define the projection operators associated with the MRAs and show that they are uniformly bounded on \(L^2(K)\). Finally, we prove that the wavelets associated with dual MRAs are biorthogonal and generate Riesz bases for \(L^2(K)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casazza, P., & Christensen, O. (1998). Frames and Schauder bases. In N. K. Govil, R. N. Mohapatra, Z. Nashed, A. Sharma, J. Szabado (Eds.), Approximation theory: In memory of A. K. Varma (pp. 133–139). Marcel Dekker.

    Google Scholar 

  2. Christensen, O. (2003). An introduction to frames and Riesz bases. Birkhäuser.

    Google Scholar 

  3. Daubechies, I. (1992). Ten lectures on wavelets. Society for Industrial and Applied Mathematics (SIAM).

    Google Scholar 

  4. Cohen, A., Daubechies, I., & Feauveau, J.-C. (1992). Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 45, 485–560.

    Article  MathSciNet  Google Scholar 

  5. Cohen, A., & Daubechies, I. (1992). A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Mathematical Journal, 68, 313–335.

    Article  MathSciNet  Google Scholar 

  6. Chui, C. K. (1992). An introduction to wavelets. Academic Press.

    Google Scholar 

  7. Lemarié-Rieusset, P. (1992). Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle. Revista Matematica Iberoamericana, 8, 221–237.

    Article  MathSciNet  Google Scholar 

  8. Wang, X. (1995). The study of wavelets from the properties of their Fourier transform, Ph.D. Thesis, Washington University, St. Louis.

    Google Scholar 

  9. Kim, H.-O., Kim, R.-Y., & Lim, J.-K. (2001). Characterizations of biorthogonal wavelets which are associated with biorthogonal multiresolution analyses. Applied and Computational Harmonic Analysis, 11, 263–272.

    Article  MathSciNet  Google Scholar 

  10. Long, R., & Chen, D. (1995). Biorthogonal wavelet bases on \({\mathbb{R}}^d\). Applied and Computational Harmonic Analysis,2, 230–242.

    Google Scholar 

  11. Calogero, A., & Garrigós, G. (2001). A characterization of wavelet families arising from biorthogonal MRAs of multiplicity \(d\). Journal of Geometric Analysis, 11, 187–217.

    Article  MathSciNet  Google Scholar 

  12. Bownik, M., & Garrigós, G. (2004). Biorthogonal wavelets, MRAs and shift-invariant spaces. Studia Mathematica, 160, 231–248.

    Article  MathSciNet  Google Scholar 

  13. King, E., & Skopina, M. (2018). On biorthogonal \(p\)-adic wavelet bases, (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 455, 67–83 (2017); translation in J. Math. Sci. (N.Y.), 234, 158–169 (2018).

    Google Scholar 

  14. Farkov, Yu. A. (2009). Biorthogonal wavelets on Vilenkin groups. Proceedings of the Steklov Institute of Mathematics, 265, 101–114.

    Article  MathSciNet  Google Scholar 

  15. Farkov, Y. A., & Rodionov, E. A. (2011). Algorithms for wavelet construction on Vilenkin groups. \(p\)-Adic Numbers Ultrametric Analysis Application, 3, 181–195.

    Google Scholar 

  16. Behera, B., & Jahan, Q. (2013). Biorthogonal wavelets on local fields of positive characteristic. Communications in Mathematical Analysis, 15, 52–75.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswaranjan Behera .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, B., Jahan, Q. (2021). Biorthogonal Wavelets. In: Wavelet Analysis on Local Fields of Positive Characteristic. Indian Statistical Institute Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-7881-3_5

Download citation

Publish with us

Policies and ethics