Skip to main content

Orchid Mycorrhizal Fungi: Structure, Function, and Diversity

  • Chapter
  • First Online:
Orchid Biology: Recent Trends & Challenges

Abstract

All orchids are mycoheterotrophic during seed germination and early stages of seedling development. Nevertheless, this dependency on the mycobiont extended into adulthood in many green photosynthetic orchids and is termed as mixotrophy. The fungal hyphae colonize orchids early during seed germination and protocorm development and form highly coiled structures called pelotons. Conventional studies mostly focused on orchid mycorrhizal fungi (OMF) that are saprophytic, but later the role of both ectomycorrhizal and parasitic fungi in orchid mycorrhizal symbiosis were recognized. Although there is enough evidence to believe that OMF is not host-specific, there are also indications which suggest the possible existence of physiological compatibility in orchid-fungal interaction. Current advances in molecular techniques have enabled us to untangle the diversity of fungi involved in the symbiosis and have helped to overcome the bottlenecks associated with the traditional identification of the fungal taxa using morphological characters. OMF symbiosis is shown to assure orchid survival in habitats vulnerable to stressful conditions or habitats with resource limitations. Further, the OMF has been shown to play a key role in the rehabilitation of threatened orchid species in their natural habitats. In spite of this, there is a large gap in our understanding of the fungal diversity associated with the tropical epiphytic and lithophytic orchid taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal S, Zettler LW (2010) Reintroduction of an endangered terrestrial orchid Dactylorhiza hatagirea (D. Don) Soo, assisted by symbiotic seed germination: first report from the Indian subcontinent. Nat Sci 8:139–145

    Google Scholar 

  • Aggarwal S, Nirmala C, Beri S, Rastogi S, Adholeya S (2012) In vitro symbiotic seed germination and molecular characterization of associated endophytic fungi in a commercially important and endangered Indian orchid Vanda coerulea Griff. ex Lindl. Eur J Environ Sci 2:33–42

    Google Scholar 

  • Alconero R (1969) Mycorrhizal synthesis and pathology of Rhizoctonia solani in Vanilla orchid roots. Phytopathology 59:426–430

    Google Scholar 

  • Alexander I (2007) A knight of symbiosis. New Phytol 176:499–510

    Article  PubMed  Google Scholar 

  • Alexander C, Hadley G (1984) The effect of mycorrhizal infection of Goodreya repens and its control by fungicide. New Phytol 97:391–400

    Article  CAS  Google Scholar 

  • Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. New Phytol 101:657–665

    Article  Google Scholar 

  • Andersen TP, Stalpers JA (1994) A check-list of Rhizoctonia epithets. Mycotaxon 51:437–457

    Google Scholar 

  • Anderson AB (1991) Symbiotic and asymbiotic germination and growth of Spiranthes magnicamporum (Orchidaceae). Lindleyana 6:183–186

    Google Scholar 

  • Arditti J (1967) Factors affecting the germination of orchid seeds. Bot Rev 33:1–96

    Article  Google Scholar 

  • Arditti J (1984) An history of orchid hybridization, seed germination and tissue culture. Bot J Linn Soc 89:359–381

    Article  Google Scholar 

  • Arditti J (1992) Fundamentals of orchid biology. Wiley, New York

    Google Scholar 

  • Athipunyakom PL, Manoch L, Piluek C, Artjariyasripong G, Tragulrung S (2004a) Mycorrhizal fungi from Spathoglottis plicata and the use of these fungi to germinate seeds of S. plicata in vitro. Kaset J Nat Sci 38:83–93

    Google Scholar 

  • Athipunyakom P, Manoch L, Piluek C (2004b) Isolation and identification of mycorrhizal fungi from eleven terrestrial orchids. Kasetsart J (Nat Sci) 38:216–228

    Google Scholar 

  • Barroso J, Chaves Neves H, Pair MS (1986) Production of indole-3-ethanol and indole-3-acetic acid by the mycorrhizal fungus of Ophrys lutea (Orchidaceae). New Phytol 103:745–749

    Article  CAS  Google Scholar 

  • Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Nat Aca Sci USA 100:9383–9387

    Article  CAS  Google Scholar 

  • Baskin CC, Baskin JA (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Australia Academic Press, Bowen Hills

    Google Scholar 

  • Batty AL, Brundrett MC, Dixon KW, Sivasithamparam K (2006) In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Aus J Bot 54:375–381

    Article  Google Scholar 

  • Bayman P, Otero JT (2006) Microbial endophytes of orchid roots. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, soil biology, vol. 9, part II. Springer, Berlin, pp 153–177

    Chapter  Google Scholar 

  • Bayman P, Lebron L, Tremblay R, Lodge J (1997) Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol 135:143–149

    Article  PubMed  Google Scholar 

  • Bayman P, Mosquera-Espinosa AT, Porras-Alfaro A (2011) Mycorrhizal relationships of Vanilla and prospects for biocontrol of root rots. In: Havkin-Frenkel D, Belanger FC (eds) Handbook of Vanilla science and technology. Blackwell, West Sussex, pp 266–280

    Google Scholar 

  • Beltrán-Nambo M, Martínez-Trujillo M, Montero-Castro JC, Salgado-Garciglia R, Otero-Ospina JT, Carreón-Abud Y (2018) Fungal diversity in the roots of four epiphytic orchids endemic to Southwest Mexico is related to the breadth of plant distribution. Rhizosphere 7:49–56

    Article  Google Scholar 

  • Bermudes D, Benzing DH (1989) Fungi in neotropical epiphyte roots. Biosystems 23:65–73

    Article  CAS  PubMed  Google Scholar 

  • Bernard N (1899) Sur la germination du Neottia nidus-avis. C R Hebd Seances Acad Sci 128:1253–1255

    Google Scholar 

  • Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716

    PubMed  Google Scholar 

  • Bidartondo MI, Birghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark; isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806

    Article  CAS  Google Scholar 

  • Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E, Langer G (2005) The phylogenetic distribution of resupinate forms across the major clades of homobasidiomycetes. Syst Biodivers 3:113–157

    Article  Google Scholar 

  • Boddington M, Dearnaley JDW (2008) Morphological and molecular identification of fungal endophytes from roots of Dendrobium speciosum. Proc R Soc Queensl 144:13–17

    Google Scholar 

  • Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi in terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61

    Article  PubMed  Google Scholar 

  • Bougoure JJ, Dearnaley JDW (2005) The fungal endophytes of Dipodium variegatum (Orchidaceae). Australas Mycol 24:15–19

    Google Scholar 

  • Bougoure JJ, Bougoure DS, Cairney JWG, Dearnaley JDW (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460

    Article  CAS  PubMed  Google Scholar 

  • Bruns TD (2001) ITS reality. Inoculum 52:2–3

    Google Scholar 

  • Burgeff H (1959) Mycorrhiza of orchids. In: Withner CL (ed) The orchids: a scientific survey. Ronald Press, New York, pp 361–395

    Google Scholar 

  • Burns J, Benson M (2000) Biocontrol of damping-off of Catharanthus roseus caused by Pythium ultimum with Trichoderma virens and binucleate Rhizoctonia fungi. Plant Dis 84:644–648

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfer in the green leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Leake JR, Read DJ (2007) Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carling DE (1996) Grouping in Rhizoctonia solani by hyphal anastomosis. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology, and disease control. Kluwer Academic, Dordrecht, pp 37–47

    Google Scholar 

  • Carling DE, Pope EJ, Brainard KA, Carter DA (1999) Characterization of mycorrhizal isolates of Rhizoctonia solani from an orchid, including AG-12, a new anastomosis group. Phytopathology 89:942–946

    Article  CAS  PubMed  Google Scholar 

  • Cha JY, Igarashi T (1996) Armillaria jezoensis, a new symbiont of Galeola septentrionalis (Orchidaceae) in Hokkaido. Mycoscience 37:21–24

    Article  Google Scholar 

  • Chang DCN (2008) Research and application of orchid mycorrhiza in Taiwan. Acta Hortic 766:299–305

    Article  Google Scholar 

  • Chang DCN, Chou LC (2001) Seed germination of Haemaria discolour var. dawsoniana and the use of mycorrhizae. Symbiosis 30:29–40

    Google Scholar 

  • Chang DCN, Chou LC (2007) Growth responses, enzyme activities, and component changes as influenced by Rhizoctonia orchid mycorrhiza on Anoectochilus formosanus Hayata. Botany 48:446–451

    Google Scholar 

  • Chen W, Hoy JW, Schncider RW (1992) Species specific polymorphism in transcribed ribosomal DNA of five Pythium species. Exp Mycol 16:22–34

    Article  CAS  Google Scholar 

  • Chung KR, Shilts T, Ertürk UM, Timmer LW, Ueng PP (2003) Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and post bloom fruit drop of citrus. FEMS Microbiol Lett 226:23–30

    Article  CAS  PubMed  Google Scholar 

  • Chutima R, Dell B, Vessabutr S, Bussaban B, Lumyong S (2011) Endophytic fungi from Pecteilis susannae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza 21:221–229

    Article  PubMed  Google Scholar 

  • Clements MA (1988) Orchid mycorrhizal associations. Lindleyana 3:73–86

    Google Scholar 

  • Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494

    Article  PubMed  Google Scholar 

  • Currah RS, Sherburne R (1992) Septal ultrastructure of some fungal endophytes from boreal orchid mycorrhizas. Mycol Res 96:583–587

    Article  Google Scholar 

  • Currah RS, Siegler L, Hamilton S (1987) New records and new taxa of fungi from the mycorrhizae of terrestrial orchids of Alberta. Can J Bot 65:2473–2482

    Article  Google Scholar 

  • Currah RS, Smreciu A, Hambleton S (1990) Mycorrhizae and mycorrhizal fungi of boreal species of Plantanthera and Coeloglossum (Orchidaceae). Can J Bot 68:1171–1181

    Article  Google Scholar 

  • Currah RS, Zelmer CD, Hambleton S, Richardson KA (1995) Fungi from orchid mycorrhizas. In: Arditti J, Pridgeon AM (eds) Orchid biology: reviews and perspectives. Kluwer, Dordrecht, pp 117–170

    Google Scholar 

  • Curtis TJ (1939) The relation of specificity of orchid mycorrhizal fungi to the problem of symbiosis. Am J Bot 26:390–399

    Article  Google Scholar 

  • Damaj M, Jabaji-hare S, Charest PM (1993) Isozyme variation and genetic relatedness in binucleate Rhizoctonia species. Phytopathology 83:864–871

    Article  CAS  Google Scholar 

  • Dan Y, Meng ZX, Guo SX (2012a) Effects of forty strains of orchidaceae mycorrhizal fungion growth of protocorms and plantlets of Dendrobium candidum and D. nobile. Afr J Microbiol Res 6:34–39

    Google Scholar 

  • Dan Y, Yu XM, Guo SX, Meng ZX (2012b) Effects of forty-two strains of orchid mycorrhizal fungi on growth of plantlets of Anoectochilus roxburghii. Afr J Microbiol Res 6:1411–1416

    Google Scholar 

  • De Candolle AP (1815) Me’moire sur les rhizoctones, nouveau genre de champignons qui attaque lesracines des plantes et en particulier celle de laLuzerne cultive’e. Mem Mus Hist Nat 2:209–216

    Google Scholar 

  • Dearnaley JDW (2006) The fungal endophytes of Erythrorchis cassythoides-is this orchid saprophytic or parasitic? Australas Mycol 25:51–57

    Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  • Dearnaley JD, Cameron DD (2017) Nitrogen transport in the orchid mycorrhizal symbiosis further evidence for a mutualistic association. New Phytol 213:10–12

    Article  CAS  PubMed  Google Scholar 

  • Decruse SW, Neethu RS, Pradeep NS (2018) Seed germination and seedling growth promoted by a Ceratobasidiaceae clone in Vanda thwaitesii Hook. f., an endangered orchid species endemic to South Western Ghats, India and Sri Lanka. S Afr J Bot 116:222–229

    Article  Google Scholar 

  • Dijk E, Eck N (1995) Axenic in vitro nitrogen and phosphorus responses of some Dutch marsh orchids. New Phytol 131:353–359

    Article  Google Scholar 

  • Dixon KW (1987). Raising terrestrial orchids from seed. In: Harris WK (ed) Modern orchid growing for pleasure and profit. Orchid Club of S. Australia, Inc, Adelaide, pp 47–100

    Google Scholar 

  • Dong F, Zhao JN, Liu HX (2008) Effects of fungal elicitors on the growth of the tissue culture of Cymbidium goeringii. North Hortic 5:194–196

    Google Scholar 

  • Downing JL, Liu H, Shaoe S, Wange X, McCormick M, Deng R, Gao J (2017) Contrasting changes in biotic interactions of orchid populations subject to conservation introduction vs. conventional translocation in tropical China. Biol Conserv 212:29–38

    Article  Google Scholar 

  • Dressler RL (1990) The Spiranthoideae: grade or subfamily? Lindleyana 5:110–116

    Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Dioscorides Press, Portland

    Google Scholar 

  • Fan L, Guo S, Cao W, Xiao P, Xu J, Fan L, Guo SX, Cao WQ, Xiao PG, Xu JT (1996) Isolation, culture, identification and biological activity of Mycena orchidicola sp. nov. in Cymbidium sinense (Orchidaceae). Acta Mycol Sin 15:251–255

    Google Scholar 

  • Fang D, Hong LX, Hui J, Yi LB (2008) Symbiosis between fungi and the hybrid Cymbidium and its mycorrhizal microstructures. For Stud China 10:41–44

    Article  Google Scholar 

  • Fay MF, Feustel M, Newlands C, Gebauer G (2018) Inferring the mycorrhizal status of introduced plants of Cypripedium calceolus (Orchidaceae) in northern England using stable isotope analysis. Bot J Linn Soc 186:587–590

    Article  Google Scholar 

  • Fracchia S, Rickert AA, Rothen C, Sede S (2016) Associated fungi, symbiotic germination and in vitro seedling development of the rare Andean terrestrial orchid Chloraea riojana. Flora 224:106–111

    Article  Google Scholar 

  • Gale SW, Fischer GA, Cribb PJ, Fay MF (2018) Orchid conservation: bridging the gap between science and practice. Bot J Linn Soc 186:425–434

    Article  Google Scholar 

  • Garcia VG, Onco MAP, Susan VR (2006) Biology and systematics of the form genus Rhizoctonia. Span J Agric Res 4:55–79

    Article  Google Scholar 

  • Gardes M, Bruns TD (1991) Rapid characterization of ectomycorrhizae using RFLP pattern of their PCR amplified- ITS. Mycol Soc Newsl 41:14

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes- application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    Article  CAS  PubMed  Google Scholar 

  • Gill DE (1989) Fruiting failure, pollinator inefficiency, and speciation in orchids. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer Associates, Inc, Sunderland, pp 458–481

    Google Scholar 

  • Girlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504

    Article  CAS  PubMed  Google Scholar 

  • González V, Salazar O, Julián MC, Acero J, Portal MA, Muñoz R, López-Córcoles H, Gómez-Acebo E, López-Fuster P, Rubio V (2002) Ceratobasidium albasitensis, a new Rhizoctonia-like fungus isolated in Spain. Persoonia 17:601–614

    Google Scholar 

  • González-Chávez MDCA, Torres-Cruz TJ, Sánchez SA, Carrillo-González R, Carrillo-López LM, Porras-Alfaro A (2018) Microscopic characterization of orchid mycorrhizal fungi: Scleroderma as a putative novel orchid mycorrhizal fungus of Vanilla in different crop systems. Mycorrhiza 28:147–157

    Article  PubMed  CAS  Google Scholar 

  • Govaerts R, Bernet P, Kratochvil K, Gerlach G, Carr G, Alrich P, Pridgeon AM, Pfahl J, Campacci MA, Holland Baptista D, Tigges H, Shaw J, Cribb PJ, George A, Kreuz K, Wood JJ (2017) World checklist of Orchidaceae. The Board of Trustees of the Royal Botanic Gardens, Kew

    Google Scholar 

  • Graham RR, Dearnaley JDW (2012) The rare Australian epiphytic orchid Sarcochilus weinthalii associates with a single species of Ceratobasidium. Fungal Divers 54:31–37

    Article  Google Scholar 

  • Griesbach RJ (2000) Potted Phalaenopsis Orchid Production. ASHS–2000 symposium: potted orchid production in the new millennium

    Google Scholar 

  • Guo SX, Xu JT (1990) Isolation and culture of fungi promoting seed germination of Shihu etc. medicinal plants of orchid family (Orchidaceae). Chin Tradit Herb Drug 21:30–31

    Google Scholar 

  • Gutierrez-Miceli FA, Ayora-Talavera T, Abud-Archila M, Salvador-Figueroa M, Adriano-Anaya L, Arias-Hernandez ML, Dendooven L (2008) Acclimatization of micropropagated orchid Guarianthe skinnerii inoculated with Trichoderma harzianum. Asian J Plant Sci 7:327–330

    Article  Google Scholar 

  • Hadley G (1970) Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytol 69:1015–1023

    Article  Google Scholar 

  • Hadley G (1982) Orchid mycorrhizal. In: Arditi J (ed) Orchid biology reviews and perspectives II. Cornell University Press, Ithaca, pp 85–118

    Google Scholar 

  • Hadley G (1984) Uptake of (14C) glucose by asymbiotic and mycorrhizal orchid protocorms. New Phytol 96:263–273

    Article  Google Scholar 

  • Hadley G (1989) Host-fungus relationships in orchid mycorrhizal systems. In: Pritchard HW (ed) Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, Cambridge, pp 5–71

    Google Scholar 

  • Hadley G, Purves S (1974) Movement of 14carbon from host to fungus in orchid mycorrhiza. New Phytol 73:475–482

    Article  CAS  Google Scholar 

  • Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu Rev Phytopathol 34:387–412

    Article  CAS  PubMed  Google Scholar 

  • Herrera P, Kottke I, Molina MC, Mendez M, Suarez JP (2018) Generalism in the interaction of Tulasnellaceae mycobionts with orchids characterizes a biodiversity hotspot in the tropical Andes of southern Ecuador. Mycoscience 59:38–48

    Article  Google Scholar 

  • Hietala AM, Vahala J, Hantula J (2001) Molecular evidence suggests that Ceratobasidium bicorne has an anamorph known as a conifer pathogen. Mycol Res 105:555–562

    Article  CAS  Google Scholar 

  • Hossain MM, Rahi P, Gulati A, Sharma M (2013) Improved ex vitro survival of asymbiotically raised seedlings of Cymbidiumusing mycorrhizal fungi isolated from distant orchid taxa. Sci Hortic 159:109–112

    Article  Google Scholar 

  • Ichielevich-Auster M, Sneh B, Koltin Y, Barash I (1985) Pathogenecity, host specificity and anastomosis groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica 13:103–112

    Article  Google Scholar 

  • Illyes Z, Rudnoy S, Bratek Z (2005) Aspects of in situ, in vitro germination and mycorrhizal partners of Liparis loeselii. Acta Biol Szeged 49:137–139

    Google Scholar 

  • Irawati I (1993) Orchid mycorrhiza in Taeniophyllum obtusum L. J Biol Indones 1:6–16

    Google Scholar 

  • Irwin MJ, Bougoure JJ, Dearnaley JDW (2007) Pterostylis nutans (Orchidaceae) has a specific association with two Ceratobasidium root-associated fungi across its range in eastern Australia. Mycoscience 48:231–239

    Article  CAS  Google Scholar 

  • IUCN (2017) The IUCN red list of threatened species. Version 2017-2. Published on the internet at www.iucnredlist.org. Retrieved on 19 Oct 2018

  • Jabaji-Hare S (1996) Biochemical methods. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer Academic, Dordrecht, pp 65–71

    Google Scholar 

  • Jacquemyn H, Honnay O, Pailler T (2007) Range size variation, nestedness and species turnover of orchid species along an altitudinal gradient on Réunion Island: implications for conservation. Biol Conserv 136:388–397

    Article  Google Scholar 

  • Jin H, Xv ZX, Chen JH, Han SF, Ge S, Luo YB (2009a) Interaction between tissue-cultured seedlings of Dendrobium officinale and mycorrhizal fungus (Epulorhiza sp.) during symbiotic culture. Chin J Plant Ecol 33:433–441

    CAS  Google Scholar 

  • Jin WJ, Li CJ, Nan ZB (2009b) Biological and physiological characteristics of Neotyphodium endophyte symbiotic with Festuca sinensis. Mycosystema 28:363–369

    Google Scholar 

  • Johnson TR, Stewart SL, Dutra D, Kane ME, Richardson L (2007) Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae) – preliminary evidence for the symbiotic culture advantage. Plant Cell Tissue Organ Cult 90:313–323

    Article  Google Scholar 

  • Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse MA (2005) Mixotrophyin orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653

    Article  CAS  PubMed  Google Scholar 

  • Kennedy AH, Taylor DL, Watoson LE (2011) Mycorrhizal specificity in the fully myco-heterotrophic Hexalectris Raf. (Orchidaceae: Epidendroideae). Mol Ecol 20:1303–1316

    Article  PubMed  Google Scholar 

  • Khamchatra N, Dixon K, Chayamarit K, Apisitwanich S, Tantiwiwat S (2016) Using in situ seed baiting technique to isolate and identify endophytic and mycorrhizal fungi from seeds of a threatened epiphytic orchid, Dendrobium friedericksianum Rchb.f. (Orchidaceae). Agric Nat Resour 50:8–13

    Google Scholar 

  • Khan SR, Kimbrough JW (1982) A reevaluation of the basidiomycetes based upon septal and basidial structures. Mycotaxon 15:103–120

    Google Scholar 

  • Knudson L (1922) Symbiosis and asymbiosis relative to orchids. New Phytol 26:328–336

    Article  Google Scholar 

  • Kristiansen KA, Taylor DL, Kjøller R, Rasmussen HN, Rosendahl S (2001) Identification of mycorrhizalfungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Mol Ecol 10:2089–2093

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen KA, Freudenstein JV, Rasmussen FN, Rasmussen HN (2004) Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Mol Phylogenet Evol 33:251–258

    Article  CAS  PubMed  Google Scholar 

  • Kull T (2002) Population dynamics of north temperate orchids. In: Kull T, Arditti J (eds) Orchid biology: reviews and perspectives VIII. Kluwer Academic, Dordrecht, pp 139–165

    Chapter  Google Scholar 

  • Lan J, Xu JT, Li JS (1994) Study on symbiotic relation between Gastrodia elata and Armillariella mellea by autoradiography. Acta Mycol Sin 13:219–222

    Google Scholar 

  • Lan J, Xu J, Li J (1996) Study on the infecting process of Mycena osmundicola on Gastrodia elata by autoradiography. Acta Mycol Sin 15:197–200

    CAS  Google Scholar 

  • Leake JR (1994) The biology of mycoheterotrophic (saprotrophic) plants. New Phytol 127:171–216

    Article  PubMed  Google Scholar 

  • Leake JR (2005) Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the saprophytic plant myth. Mycologist 19:113–122

    Google Scholar 

  • Lee SB, Taylor JW (1992) Phylogeny of five fungus-like protoctistan Phytophton species, inferred from the internal transcribed spacers of ribosomal DNA. Mol Biol Evol 9:636–653

    CAS  PubMed  Google Scholar 

  • Lee SS, You JY (2000) Identification of the orchid mycorrhizal fungi isolated from the roots of Korean native orchid. Mycobiology 28:17–26

    Article  CAS  Google Scholar 

  • Lee SS, Oh CH, Paek KY, Lee TS (1998) Isolation of the orchid mycorrhizal fungi from the roots of the Korean native orchid and inoculations of the isolates to four different orchids. Korean J Plant Pathol 14:536–542

    Google Scholar 

  • Lee JK, Lee SS, Eom AH, Paek KY (2003) Interactions of newly isolated orchid mycorrhizal fungi with Korean Cymbidium kanran hybrid ‘Chungsu’. Mycobiology 31:151–156

    Article  CAS  Google Scholar 

  • Liau CH, Lu JC, Prasad V, Hsiao HH, You SJ, Lee JT, Yang NS, Huang HE, Feng TY, Chen WH, Chan MT (2003) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12:329–336

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Luo Y, Liu H (2010) Studies of mycorrhizal fungi of Chinese orchids and their role in orchid conservation in China – a review. Bot Rev 76:241–262

    Article  Google Scholar 

  • Lozano FD, Herbada DG, Rivero LM, Saiz JCM, Ollero HS (1996) Threatened plants in peninsular and Balearic Spain: a report based on the EU Habitats Directive. Biol Conserv 76:123–133

    Article  Google Scholar 

  • Ma M, Koon T, Wong SM (2003) Identification and molecular phylogenyof Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • MacNish GC, Carling DE, Brainard KA (1993) Characterization of Rhizoctonia solani AG-8 from bare patches by pectic isozyme (zymograms) and anastomosis techniques. Phytopathology 83:922–927

    Article  CAS  Google Scholar 

  • Marchisio VF, Berta G, Fontana A, Mannina FM (1985) Endophytes of wild orchids native to Italy: their morphology, caryology, ultrastructure and cytochemical characterization. New Phytol 100:623–641

    Article  Google Scholar 

  • Masuhara G, Katsuya K (1989) Effects of mycorrhizal fungi on seed germination and early growth of three Japanese terrestrial orchids. Sci Hortic 37:331–337

    Article  Google Scholar 

  • Masuhara G, Katsuya K (1994) In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames. var. amoena (M. Bieberstein) Hara (Orchidaceae). New Phytol 127:711–718

    Article  PubMed  Google Scholar 

  • Masuhara G, Katsuya K, Yamaguchi K (1993) Potential for symbiosis of Rhizoctonia solani and binucleate Rhizoctonia with seeds of Spiranthes sinensis var. amoena in vitro. Mycol Res 97:746–752

    Article  Google Scholar 

  • McCormick MK, Whigham DF, O’Neil J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438

    Article  PubMed  Google Scholar 

  • McCormick MK, Taylor LD, Juhaszova K, Burnett RK, Whigham DF, O’Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523

    Article  PubMed  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytol 145:523–537

    Article  PubMed  Google Scholar 

  • Milligan J, Williams PG (1988) The mycorrhizal relationships and multinucleate rhizoctonias from non-orchids with Microtis (Orchidaceae). New Phytol 108:205–209

    Article  PubMed  Google Scholar 

  • Moncalvo JM, Nilsson RH, Koster B, Dunham SM, Bernauer T, Matheny PB, Porter TM, Margaritescu S, Weiß M, Garnica S, Danell E, Langer G, Langer E, Larsson E, Larsson KH, Vilgalys R (2006) The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98:937–948

    Article  PubMed  Google Scholar 

  • Moore RT (1987) The genera of Rhizoctonia-like fungi: Ascorhizoctonia, Ceratorhiza gen. nov., Epulorhiza gen. nov., Moniliopsis, and Rhizoctonia. Mycotaxon 29:91–99

    Google Scholar 

  • Mosquera-Espinosa AT, Prado BP, Gómez-Carabalí GA, Otero JT (2013) The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia 105:141–150

    Article  PubMed  Google Scholar 

  • Mújica EB, Mably JJ, Skarha SM, Corey LL, Richardson LW, Danaher MW, González EH, Zettler LW (2018) A comparision of ghost orchid (Dendrophylax lindenii) habitats in Florida and Cuba, with particular reference to seedling recruitment and mycorrhizal fungi. Bot J Linn Soc 186:572–586

    Article  Google Scholar 

  • Muthukumar T, Kowsalya A (2017) Comparative anatomy of aerial and substrate roots of Acampe praemorsa (Rox.) Blatt. & McCann. Flora 226:17–28

    Article  Google Scholar 

  • Muthukumar T, Sathiyadash K (2009) Mycorrhizal morphology of Nun’s orchid [Phaius tankervilliae (Banks ex L’ Herit.) Blume]. Mycorrhiza News 21:9–11

    Google Scholar 

  • Muthukumar T, Shenbagam M (2018) Vegetative anatomy of the orchid Bulbophyllum sterile (Orchidaceae, Epidendroideae). Lankesteriana 18:13–22

    Article  Google Scholar 

  • Muthukumar T, Uma E, Karthikeyan A, Sathiyadash K, Jaison S, Priyadharsini P, Chongtham I, Muniappan V (2011) Morphology, anatomy and mycorrhizae in subterranean partsof Zeuxine gracilis (Orchidaceae). An Biol 33:127–134

    Google Scholar 

  • Nontachaiyapoom S, Sasirat S, Manoch L (2010) Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium and Cymbidium collected in Chiang Rai and Chiang Mai provinces of Thailand. Mycorrhiza 20:459–471

    Article  PubMed  Google Scholar 

  • Novotna A, Benítez A, Herrera P, Cruz D, Filipczykova E, Suarez JP (2018) High diversity of root-associated fungi isolated from three epiphytic orchids in southern Ecuador. Mycoscience 59:24–32

    Article  Google Scholar 

  • Okayama M, Yamato M, Yagame T, Iwase K (2012) Mycorrhizal diversity and specificity in Lecanorchis (Orchidaceae). Mycorrhiza 22:545–553

    Article  PubMed  Google Scholar 

  • Oliveira VC, Sajo MG (1999) Root anatomy of nine Orchidaceae species. Braz Arch Biol Technol 42:405–413

    Article  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Otero JT, Ackerman JC, Bayman P (2004) Differences in mycorrhizal preferences between two tropical orchids. Mol Ecol 13:2393–2404

    Article  CAS  PubMed  Google Scholar 

  • Ovando I, Damon A, Ambrosio D, Albores V, Bello R, Adriano L, Salvador M (2005) Isolation of endophytic fungi and their mycorrhizal potential for the tropical epiphytic orchids Cattleya skinneri, C. aurantiaca and Brassavola nodosa. Asian J Plant Sci 4:309–315

    Article  Google Scholar 

  • Pan RC, Chen JX (1994) Effects of nitrate-nitrogen and ammonium-nitrogen on growth and development in Cymbidium sinense. Acta Bot Yunnanica 16:285–290

    CAS  Google Scholar 

  • Pellegrino G, Bellusci F (2009) Molecular identification of mycorrhizal fungi in Dactylorhiza sambucina (Orchidaceae). Biologia 64:893–897

    Google Scholar 

  • Pereira OL, Rollemberg CL, Borges AC, Matsuoka K, Kasuya MCM (2003) Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience 44:153–155

    Article  Google Scholar 

  • Pereira OL, Kasuya MCM, Borges AC, Araújo EF (2005) Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can J Bot 83:54–65

    Article  CAS  Google Scholar 

  • Pereira G, Romero C, Suz LM, Atala C (2014) Essential mycorrhizal partners of the endemic Chilean orchids Chloraea collicensis and C. gavilu. Flora 209:95–99

    Article  Google Scholar 

  • Perkins AJ, Masuhara G, McGee PA (1995) Specificity of the associations between Microtis parviflora (Orchidaceae) and its mycorrhizal fungi. Aust J Bot 43:85–91

    Article  Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869

    Article  Google Scholar 

  • Porembski S, Barthlott W (1988) Velamen radicum micromorphology and classification of Orchidaceae. Nord J Bot 8:117–137

    Article  Google Scholar 

  • Porras-Alfaro A (2004) Mycorrhizal fungi of Vanilla: an integral view of the symbiosis. MS thesis, University of Puerto Rico, Rio Piedras

    Google Scholar 

  • Porras-Alfaro A, Bayman P (2007) Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth. Mycologia 99:510–525

    Article  CAS  PubMed  Google Scholar 

  • Purves S, Hadley G (1975) Movement of carbon compounds between the parents in orchid mycorrhizal. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 175–194

    Google Scholar 

  • Ramsay RR, Sivasithamparam K, Dixon KW (1987) Anastomosis groups among Rhizoctonia-like endophytic fungi in south western Australia Pterostylis species (Orchidaceae). Lindleyana 2:161–166

    Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids. From seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rasmussen HN, Rasmussen FN (1991) Climatic and seasonal regulation of seed plant establishment in Dactylorhiza majalis inferred from symbiotic experiments in vitro. Lindleyana 6:221–227

    Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life cycle. Oikos 118:334–345

    Article  Google Scholar 

  • Rasmussen HN, Whigham DF (1998) Importance of woody debris in seed germination of Tipularia discolor (Orchidaceae). Am J Bot 85:829–834

    Article  CAS  PubMed  Google Scholar 

  • Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80

    Article  CAS  Google Scholar 

  • Roberts P (1999) Rhizoctonia-forming fungi. A taxonomic guide. Royal Botanic Gardens, Kew

    Google Scholar 

  • Robinson M, Riov J, Sharon A (1998) Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 64:5030–5032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruibal MR, Triponez Y, Smith LM, Peakall R, Linde CC (2017) Population structure of an orchid mycorrhizal fungus with genus wide specificity. Sci Rep 7:5613. https://doi.org/10.1038/s41598-017-05855-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha D, Rao AN (2006) Studies on endophytic mycorrhiza of some selected orchids of Arunachal Pradesh – 1. Isolation and identification. Bull Arunachal For Res 22:9–16

    Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  • Sanford WW, Adanlawo I (1973) Velamen and exodermis characters of West African epiphytic orchids in relation to taxonomic grouping and habitat tolerance. Bot J Linn Soc 66:307–321

    Article  Google Scholar 

  • Sathiyadash K, Muthukumar T, Uma E, Pandey RR (2012) Mycorrhizal association and morphology in orchids. J Plant Int 7:237–248

    Google Scholar 

  • Sathiyadash K, Muthukumar T, Bala Murugan S, Sathishkumar R, Uma E, Jaison S, Priyadharsini P (2013) In vitro asymbiotic seed germination, mycorrhization and seedling development of Acampae praemorsa (Roxb.) Blatt. & McCann, a common South Indian orchid. Asian Pac J Reprod 2:114–118

    Article  Google Scholar 

  • Sathiyadash K, Muthukumar T, Bala Murugan S, Sathishkumar R, Pandey RR (2014) In vitro symbiotic seed germination of South Indian endemic orchid Coelogyne nervosa. Mycoscience 55:183–189

    Article  Google Scholar 

  • Sebastián F, Vanesa S, Eduardo F, Graciela T, Silvana S (2014) Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina. Mycorrhiza 24:35–43

    Article  PubMed  Google Scholar 

  • Seifert KA, Samson RA, Dewaard JR, Houbraken J, Levesque CA, Moncalvo JM, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using C01 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA 104:3901–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selosse MA, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar S (2003) Mycorrhizal fungi of endangered orchid species in Kolli, a part of Eastern Ghats, South India. Lankesteriana 7:15–156

    Google Scholar 

  • Senthilkumar S, Britto SJ, Krishnamurthy KV, Hariharan C (2000) Biochemical analysis of mycorrhizal roots of Aerides maculosum. Phytomorphology 50:273–279

    Google Scholar 

  • Shan XC, Liew ECY, Weatherhead MA, Hodgkiss IJ (2002) Characterisation and taxonomic placement of Rhizoctonia-like endophytes from orchid roots. Mycologia 94:230–239

    Article  CAS  PubMed  Google Scholar 

  • Sharma J, Zettler LW, Sambeek JWV, Ellersieck MR, Starbuck CJ (2003) Symbiotic seed germination and mycorrhizae of federally threatened Platanthera praeclara (Orchidaceae). Am Midl Nat 149:104–120

    Article  Google Scholar 

  • Sheehan TJ (1983) Recent advances in botany, propagation and physiology of orchids. In: Janick J (ed) Horticultural reviews, vol 5. AVI Publishing Company, Westport, pp 279–315

    Google Scholar 

  • Shefferson RP, Wei M, Kull T, Taylor DL (2005) High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626

    Article  CAS  PubMed  Google Scholar 

  • Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am J Bot 95:156–164

    Article  PubMed  Google Scholar 

  • Shimura H, Koda Y (2005) Enhanced symbiotic seed germination of Cypripedium macranthos var rebunense following inoculation after cold treatment. Physiol Plant 123:281–287

    Article  CAS  Google Scholar 

  • Shimura H, Sadamoto M, Matsuura M, Kawahara T, Naito S, Koda Y (2009) Characterization of mycorrhizal fungi isolated from the threatened Cypripedium macranthos in a northern island of Japan; two phylogenetically distinct fungi associated with the orchid. Mycorrhiza 19:525–534

    Article  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Smith SE (1966) Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytol 65:488–499

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith CJ (1996) Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol 132:1–45

    Article  CAS  PubMed  Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. American Phytopathology Society, St. Paul

    Google Scholar 

  • Sneh B, Yamoah E, Stewart A (2004) Hypovirulent Rhizoctonia spp. isolates from New Zealand soils protect radish seedlings against damping-off caused by R. solani. N Z Plant Protect 57:54–58

    Google Scholar 

  • Stark C, Abik WB, Durka W (2009) Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycol Res 113:952–959

    Article  PubMed  Google Scholar 

  • Steinfort U, Verdugo G, Besoain X, Cisternas MA (2010) Mycorrhizal association and symbiotic germination of the terrestrial orchid Bipinnula fimbriata (Poepp.) Johnst (Orchidaceae). Flora 205:811–817

    Article  Google Scholar 

  • Stewart SL, Kane ME (2006) Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:159–167

    Article  CAS  Google Scholar 

  • Stewart SL, Kane ME (2007) Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. In Vitro Cell Dev Biol Plant 43:178–186

    Article  Google Scholar 

  • Stewart SL, Zettler LW (2002) Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinquiseta, H. macroceratitis) from Florida. Aquat Bot 72:25–35

    Article  Google Scholar 

  • Stewart SL, Zettler LW, Minso J, Brown PM (2003) Symbiotic germination and reintroduction of Spiranthes brevilabris Lindley, an endangered orchid native to Florida. Selbyana 24:64–70

    Google Scholar 

  • Stoutamire WP (1996) Seeds and seedlings of Platanthera leucophaea (Orchidaceae). In: Allen C (ed) Proceedings of the North American native terrestrial orchid-propagation and production conference. National Arboretum, Washington, pp 55–61

    Google Scholar 

  • Suarez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Ogiwara I, Hakoda N (2000) Seed germination of Habenaria (pecteilis) radiata (Orchidaceae: Orchideae) in vitro. Lindleyana 15:59–63

    Google Scholar 

  • Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two non-photosynthetic orchids. Proc Natl Acad Sci USA 94:4510–4515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the cheating orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8:1719–1732

    Article  Google Scholar 

  • Taylor DL, McCormick MK (2008) Internal transcribedspacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in mycoheterotrophic plants. In: Van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin, pp 375–413

    Chapter  Google Scholar 

  • Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond 271:35–43

    Article  Google Scholar 

  • Uetake Y, Kobayashi K, Ogoshi A (1992) Ultrastructural changes during the symbiotic development of Spiranthes sinensis (Orchidaceae) protocorms associated with binucleate Rhizoctonia anastomosis group. Mycol Res 96:199–209

    Article  Google Scholar 

  • Umata H (1995) Seed germination of Galeola altissima, an achlorophyllous orchid, with aphyllophorales fungi. Mycoscience 36:369–372

    Article  Google Scholar 

  • Umata H (1998) A new biological function of shiitake mushroom, Lentinula edodes, in a myco-heterotrophic orchid, Erythrorchis ochobiensis. Mycoscience 38:355–357

    Article  Google Scholar 

  • Valadares RBS, Pereira MC, Otero JT, Cardoso EJBN (2011) Orchid mycorrhizal diversity in Coppensia doniana, a widespread Oncidiinae from Campos do Jordão-SP, Brazil. Biotropica 44:114–122

    Article  Google Scholar 

  • Vallee L, Hogbin TLM, Monks L, Makinson B, Matthes M, Rossetto M (1997) Guidelines for the translocation of threatened plants in Australia. Australian Network for Plant Conservation, Canberra

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vazquez DP, Aizen MA (2003) Null model analyses of specialization in plant–pollinator interactions. Ecology 84:2493–2501

    Article  Google Scholar 

  • Vilgalys R, Cubeta MA (1994) Molecular systematics and population biology of Rhizoctonia. Annu Rev Phytopathol 32:135–155

    Article  Google Scholar 

  • Vralstad T, Schumacher T, Taylor AFS (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153:143–152

    Article  Google Scholar 

  • Warcup JH (1971) Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytol 70:41–46

    Article  Google Scholar 

  • Warcup JH (1973) Symbiotic germination of some Australian terrestrial orchids. New Phytol 72:387–392

    Article  Google Scholar 

  • Warcup JH (1975) Factors affecting symbiotic germination of orchid seed. In: Sanders FK, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London/New York, pp 87–104

    Google Scholar 

  • Warcup JH, Talbot PHB (1966) Perfect states of some rhizoctonias. Trans Br Mycol Soc 49:427–435

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1967) Perfect states of rhizoctonias associated with orchid. New Phytol 66:631–641

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1971) Perfect states of rhizoctonias associated with orchids. II. New Phytol 70:35–40

    Article  Google Scholar 

  • Warcup JA, Talbot PHB (1980) Perfect states of rhizoctonias associated with orchids. III. New Phytol 86:267–272

    Article  Google Scholar 

  • Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381

    Article  Google Scholar 

  • Warcup JH (1991) The Rhizoctonia endophytes of Rhizanthella (Orchidaceae). Mycol Res 95:656–659

    Article  Google Scholar 

  • Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A (2011) The effects of above- and below-ground mutualisms on speciation and coexistence. Am Nat 177:54–68

    Article  Google Scholar 

  • Watkinson JI (2002) Characterization of two genes, trehalose-6-phosphatesynthase/phosphatase and nucleotide binding protein, shown to be differentially regulated in roots of Cypripedium parviflorum var. pubescens grown with a mycorrhizal fungus Thanatephorus pennatus. PhD thesis submitted to Virginia Polytechnic Institute

    Google Scholar 

  • Waud M, Busschaert P, Lievens B, Jacquemyn H (2016) Specificity and localized distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol 20:155–165

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) PCR protocols. In: Innis MA, Gelfand DH, Snisky JJ, White TJ (eds) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic, London, pp 315–322

    Google Scholar 

  • Whitridge H, Southworth D (2005) Mycorrhizal symbionts of the terrestrial orchid Cypripedium fasciculatum. Selbyana 26:328–334

    Google Scholar 

  • Wu JP, Zheng SZ (1994) Isolation and identification of Fusarium sp. from mycorrhizal fungus in Dendrobium densiflorum and analyses of its metabolites. J Fudan Univ (Nat Sci) 33:547–552

    CAS  Google Scholar 

  • Wu JY, Qian J, Zheng SZ (2002) A preliminary study on ingredient of secretion from fungi of orchid mycorrhiza. Chin J Appl Ecol 13:845–848

    CAS  Google Scholar 

  • Wu JY, Hu T, Yang SZ, Liu L, Wang Q, Wang T, Li LB (2009) rDNA ITS analysis and preliminary study in the specificity for the symbiotic mycorrhizal fungi of Cymbidium goeringii and C. faberi. Ecol Sci 28:134–138

    Google Scholar 

  • Wu J, Ma H, Lu M, Han S, Zhu Y, Jin H, Liang J, Liu L, Xu J (2010) Rhizoctonia fungi enhance the growth of the endangered orchid Cymbidium goeringii. Botany 88:20–29

    Article  CAS  Google Scholar 

  • Wu PH, Huang DD, Chang DCN (2011) Mycorrhizal symbiosis enhances Phalaenopsis orchid’s growth and resistance to Erwinia chrysanthemi. Afr J Biotechnol 10:10095–10100

    Google Scholar 

  • Wu J, Ma H, Xu X, Qiao N, Guo S, Liu F, Zhang D, Zhou L (2013) Mycorrhizas alter nitrogen acquisition by the terrestrial orchid Cymbidium goeringii. Ann Bot 111:1181–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing X, Ma X, Deng Z, Chen J, Wu F, Guo S (2013) Specificity and preference of mycorrhizal associations in two species of the genus Dendrobium (Orchidaceae). Mycorrhiza 23:317–324

    Article  PubMed  Google Scholar 

  • Xu JT (1993) The cultivation of Gastrdia elata in China, 1st edn. Beijing Medical College & Peking Union Medical College, Beijing

    Google Scholar 

  • Xu JT, Mu C (1990) The relation between growth of Gastrodiaelata protocorms and fungi. Acta Bot Sin 32:26–31

    Google Scholar 

  • Yagame T, Yamato M (2008) Isolation and identification of mycorrhizal fungi associated with Stigmatodactylus sikokianus (Maxim. ex Makino) Rauschert (Orchidaceae). Mycoscience 49:388–391

    Article  CAS  Google Scholar 

  • Yamato M, Yagame T, Suzuki A, Iwase K (2005) Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae). Mycoscience 46:73–77

    Article  CAS  Google Scholar 

  • Yang G, Chen H, Naito S, Ogoshi A, Deng L (2005) First report of AG-A of binucleate Rhizoctonia in China, pathogenic to soya, bean, pea and snap bean. J Phytopathol 153:333–336

    Article  CAS  Google Scholar 

  • Yang YL, Lai PF, Jiang SP (2008a) Research development in Dendrobium officinale. J Shandong Univ TCM 32:82–85

    Google Scholar 

  • Yang YL, Liu ZY, Zhu GS (2008b) Study on symbiotic seed germination of Pleione bulbocodioides (Franch) Rolfe. Microbiology 35:909–912

    Google Scholar 

  • Yuan L, Yang ZL, Li SY, Hu H, Huang JL (2010) Mycorrhizal specificity, preference, and plasticity of six slipper orchids from south western China. Mycorrhiza 20:559–568

    Article  PubMed  Google Scholar 

  • Zaiqi L, Yin Y (2008) Endophytic fungi and their growth effects on Dendrobium nobile Lind. and Dendrobium loddigesii Rolfe. Guizhou For Sci Technol 1:28–32

    Google Scholar 

  • Zelmer CD, Currah RS (1995) Ceratorhiza pernacatena and Epulorhiza calendulina spp. nov. mycorrhizal fungi of terrestrial orchids. Can J Bot 73:1981–1985

    Article  Google Scholar 

  • Zelmer CD, Cuthbertson L, Currah RS (1996) Fungi associated with terrestrial orchid mycorrhizas, seeds, and protocorms. Mycoscience 37:439–448

    Article  Google Scholar 

  • Zettler LW (1997a) Orchid fungal symbiosis and its value in conservation. Mcilvaninea 13:40–45

    Google Scholar 

  • Zettler LW (1997b) Terrestrial orchid conservation by symbiotic seed germination: techniques and perspectives. Selbyana 18:188–194

    Google Scholar 

  • Zettler LW, McInnis TM (1993) Symbiotic seed germination and development of Spiranthes cernua (L.) L.C. Rich. and Goodyera pubescens (Willd.) R. Br. (Orchidaceae: Spiranthoideae). Lindleyana 8:155–162

    Google Scholar 

  • Zettler LW, Piskin KA (2011) Mycorrhizal fungi from protocorms, seedlings and mature plants of the eastern prairie fringed orchid, Platanthera leucophaea (Nutt.) Lindley: a comprehensive list to augment conservation. Am Midl Nat 166:29–39

    Article  Google Scholar 

  • Zettler LW, Burkhead JC, Marshall JA (1999) Use of a mycorrhizal fungus from Epidendrum conopseum to germinate seed of Encyclia tampensis in vitro. Lindleyana 14:102–105

    Google Scholar 

  • Zettler LW, Stewart SL, Bowles ML, Jacobs KA (2001) Mycorrhizal fungi and cold-assisted symbiotic germination of the federally threatened eastern prairie fringed orchid, Platanthera leucophaea (Nuttall) Lindley. Am Midl Nat 145:168–175

    Article  Google Scholar 

  • Zettler LW, Sharma J, Rasmussen F (2004) Mycorrhizal diversity. In: Dixon K, Cribb P, Kell S, Barrett R (eds) Orchid conservation. Natural History Publication, Kota Kinabalu, pp 185–203

    Google Scholar 

  • Zettler LW, Piskin KA, Stewart SL, Hartsock JJ, Bowles ML, Bell TJ (2005) Protocorm mycobionts of the federally threatened eastern prairie fringed orchid, Platanthera leucophaea (Nutt.) Lindley, and a technique to prompt leaf elongation in seedlings. Stud Mycol 53:163–171

    Google Scholar 

  • Zettler LW, Corey LL, Jacks AL, Gruender LT, Lopez AM (2013) Tulasnella irregularis (Basidiomycota: Tulasnellaceae) from roots of Encyclia tampensis in South Florida, and confirmation of its mycorrhizal significance through symbiotic seed germination. Lankesteriana 13:119–128

    Google Scholar 

  • Zhang JH, Wang CL, Guo SX, Chen JM, Xiao PG (1999) Studies on the plant hormones produced by 5 species of endophytic fungi isolated from medicinal plants (Orchidaceae). Acta Acad Medicinae Sinicae 21:460–465

    CAS  Google Scholar 

  • Zhang L, Chen J, Lv Y, Gao C, Guo S (2012) Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol Prog 11:395–401

    Article  Google Scholar 

  • Zhang SB, Yang Y, Li J, Qin J, Zhang W, Huang W, Hu H (2018) Physiological diversity of orchids. Plant Divers 40:196–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao JN, Liu HX (2008) Effects of fungal elicitors on the protocorm of Cymbidium eburneum. Ecol Sci 27:134–137

    Google Scholar 

  • Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sathiyadash, K., Muthukumar, T., Karthikeyan, V., Rajendran, K. (2020). Orchid Mycorrhizal Fungi: Structure, Function, and Diversity. In: Khasim, S., Hegde, S., González-Arnao, M., Thammasiri, K. (eds) Orchid Biology: Recent Trends & Challenges . Springer, Singapore. https://doi.org/10.1007/978-981-32-9456-1_13

Download citation

Publish with us

Policies and ethics