Skip to main content

Disorder and impurities in hubbard-antiferromagnets

  • Conference paper
  • First Online:
Advances in Solid State Physics 38

Part of the book series: Advances in Solid State Physics ((ASSP,volume 38))

Abstract

We study the influence of disorder and randomly distributed impurities on the properties of correlated antiferromagnets. To this end the Hubbard model with (i) random potentials, (ii) random hopping elements, and (iii) randomly distributed values of interaction is treated using quantum Monte Carlo and dynamical mean-field theory. In cases (i) and (iii) weak disorder can lead to an enhancement of antiferromagnetic (AF) order: in case (i) by a disorder-induced delocalization, in case (iii) by binding of free carriers at the impurities. For strong disorder or large impurity concentration antiferromagnetism is eventually destroyed. Random hopping leaves the local moment stable but AF order is suppressed by local singlet formation. Random potentials induce impurity states within the charge gap until it eventually closes. Impurities with weak interaction values shift the Hubbard gap to a density off half-filling. In both cases an antiferromagnetic phase without charge gap is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. G. Xiao, M. Z. Cieplak, A. Gavrin, F. H. Streitz, A. Bakhshai, and C. L. Chien, Phys. Rev. Lett. 60, 1446 (1988); B. Keimer et al., Phys. Rev. B 45, 7430 (1992); A. V. Mahajan, H. Alloul, G. Collin, and J. F. Marucco, Phys. Rev. Lett. 72, 3100 (1994).

    Article  ADS  Google Scholar 

  2. M. C. Martin, M. Hase, K. Hirota, G. Shirane, Y. Sasago, N. Koide, and K. Uchinokur, Phys. Rev. B 56, 3173 (1997); P. E. Anderson, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 56, 11014 (1997).

    Article  ADS  Google Scholar 

  3. M. Azuma, Y. Fujishiro, M. Takano, M. Nohara, and H. Takagi, Phys. Rev. B 55, 8658 (1997).

    Article  ADS  Google Scholar 

  4. H. Takagi et al., Phys. Rev. B 40, 2254 (1989); S. Uchida, et al., Phys. Rev. B 43, 7942 (1991).

    Article  ADS  Google Scholar 

  5. T. Ido, K. Magoshi, H. Eisaki, and S. Uchida, Phys. Rev. B 44, 12094 (1991).

    Article  ADS  Google Scholar 

  6. S. Hüfner, P. Steiner, I. Sander, F. Reinert, and H. Schmitt, Z. Phys. B 86, 207 (1992);ibid. S. Hüfner, P. Steiner, I. Sander, F. Reinert, and H. Schmitt, Z. Phys. B 88, 247 (1992) F. Reinert et al., Z. Phys. B 97, 83 (1995).

    Article  ADS  Google Scholar 

  7. M. Ma and E. Fradkin, Phys. Rev. B 28, 2990 (1983); A. M. Finkelshtein, Zh. Eksp. Teor. Fiz. 84, 168 (1983) [Sov. Phys. JETP 57, 97 (1983)]; C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B 30, 527 (1984); C. Castellani, C. Di Castro, and M. Grilli, ibid. C. Castellani, C. Di Castro, and M. Grilli, 34, 5907 (1986).

    Article  ADS  Google Scholar 

  8. A. M. Finkelshtein, Z. Phys. B 56, 189 (1984); C. Castellani, et al. Phys. Rev. B 30, 1956 (1984); 33, 6169 (1986).

    Article  ADS  Google Scholar 

  9. M. Ma, Phys. Rev. B 26, 5097 (1982); J. Yi, L. Zhang, and G. S. Canright, Phys. Rev. B 49, 15 920 (1994).

    Article  ADS  Google Scholar 

  10. M. E. Tusch and D. E. Logan, Phys. Rev. B 48, 14 843 (1993).

    Google Scholar 

  11. A. Singh and Z. Tešanović, Phys. Rev. B 41, 614 (1990); 41, 11 457 (1990), S. Basu and A. Singh, Phys. Rev. B 53, 6406 (1996).

    Article  ADS  Google Scholar 

  12. V. Janiš and D. Vollhardt, Phys. Rev. B 46, 15 712 (1992).

    Google Scholar 

  13. V. Dobrosavljević and G. Kotliar, Phys. Rev. Lett. 71, 3218 (1993); Phys. Rev. B 50, 1430 (1994).

    Article  ADS  Google Scholar 

  14. V. Janiš, M. Ulmke, and D. Vollhardt, Europhys. Lett. 24, 287 (1993); M. Ulmke, V. Janiš, and D. Vollhardt, Phys. Rev. B 51, 10 411 (1995).

    Article  ADS  Google Scholar 

  15. A. Sandvik and D. J. Scalapino, Phys. Rev. 47, 10090 (1993); A. Sandvik, D. J. Scalapino, and P. Henelius Phys. Rev. 50, 10474 (1994).

    Article  Google Scholar 

  16. M. Ulmke and R. T. Scalettar, Phys. Rev. B 55, 4149 (1997).

    Article  ADS  Google Scholar 

  17. P. J. H. Denteneer, M. Ulmke, R. T. Scalettar, G. T. Zimanyi, Physica A 251, 162 (1998); M. Ulmke, P. J. H. Denteneer, R. T. Scalettar, G. T. Zimanyi, Europhys. Lett. 42, 655 (1998).

    Article  Google Scholar 

  18. D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).

    Article  ADS  Google Scholar 

  19. R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344 (1982); M. Milovanović, S. Sachdev, and R. N. Bhatt, Phys. Rev. Lett. 63, 82 (1989).

    Article  ADS  Google Scholar 

  20. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981). J. E. Hirsch, Phys. Rev. B 28, 4059 (1983). G. Sugiyama and S.E. Koonin, Ann. Phys. 168, 1 (1986); S. Sorella, S. Baroni, R. Car, and M. Parrinello, Europhys. Lett. 8, 663 (1989). S. R. White, D. J. Scalapino, R. L., Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. scalettar, Phys. Rev. B 40, 506 (1989).

    Article  ADS  Google Scholar 

  21. D. A. Huse, Phys. Rev. B 37, 2380 (1988).

    Article  ADS  Google Scholar 

  22. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989); D. Vollhardt, in Correlated Electron Systems, ed. V. J. Emery, World Scientific, Singapore, 1993.

    Article  ADS  Google Scholar 

  23. T. Pruschke, M. Jarrell, J. K. Freericks, Adv. Phys. 44, 187 (1995); A. Georges. G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  Google Scholar 

  24. P. A. Wolff, Phys. Rev. 124, 1030 (1961).

    Article  ADS  Google Scholar 

  25. J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).

    Article  ADS  Google Scholar 

  26. A. Singh, M. Ulmke, and D. Vollhardt, Phys. Rev. B 58 (to appear Oct. 1998); condmat/9803094.

    Google Scholar 

  27. P. Sen, S. Basu, and A. Singh, Phys. Rev. B 50, 10 381 (1994); P. Sen and A. Singh, Phys. Rev. B 53, 328 (1996); A. Singh and P. Sen, Phys. Rev. B 57, 10598 (1998).

    Google Scholar 

  28. N. Bulut, D. Hone, D. J. Scalapino, and E. Y. Loh, Phys. Rev. Lett. 62, 2192 (1989); D. Poilbanc, D. J. Scalapino, and W. Hanke, Phys. Rev. Lett. 72, 884 (1994); G. B. Martins, M. Laukamp, J. Riera, and E. Dagotto, Phys. Rev. Lett. 78, 3563 (1997); Y. Motome, N. Katoh, N. Furukawa, and M. Imada, J. Phys. Soc. Jpn. 65, 1949 (1996).

    Article  ADS  Google Scholar 

  29. W. Brenig, and A. P. Kampf, Phys. Rev. B 43, 12 914 (1991); E. Manousakis, Phys. Rev. B, 45, 7570 (1992); C. C. Wan, A. B. Harris and D. Kumar, Phys. Rev. B 48, 1036 (1993).

    Google Scholar 

  30. M. Corti et al., Phys. Rev. B 56, 11056 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Sandvik and M. Vekić, Phys. Rev. Lett. 74, 1226 (1995).

    Article  ADS  Google Scholar 

  32. For a recent review see: F. Gebhard, The Mott Metal-Insulator Transition, Springer Tracts in Modern Physics, vol. 137, (Springer, Heidelberg 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Ulmke, M. et al. (1999). Disorder and impurities in hubbard-antiferromagnets. In: Kramer, B. (eds) Advances in Solid State Physics 38. Advances in Solid State Physics, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107630

Download citation

  • DOI: https://doi.org/10.1007/BFb0107630

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41575-6

  • Online ISBN: 978-3-540-44558-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics