Skip to main content

Optogenetic Downregulation of Protein Levels to Control Programmed Cell Death in Mammalian Cells with a Dual Blue-Light Switch

  • Protocol
  • First Online:
Photoswitching Proteins

Abstract

Optogenetic approaches facilitate the study of signaling and metabolic pathways in animal cell systems. In the past 10 years, a plethora of light-regulated switches for the targeted control over the induction of gene expression, subcellular localization of proteins, membrane receptor activity, and other cellular processes have been developed and successfully implemented. However, only a few tools have been engineered toward the quantitative and spatiotemporally resolved downregulation of proteins. Here we present a protocol for reversible and rapid blue light-induced reduction of protein levels in mammalian cells. By implementing a dual-regulated optogenetic switch (Blue-OFF), both repression of gene expression and degradation of the target protein are triggered simultaneously. We apply this system for the blue light-mediated control of programmed cell death. HEK293T cells are transfected with the proapoptotic proteins PUMA and BID integrated into the Blue-OFF system. Overexpression of these proteins leads to programmed cell death, which can be prevented by irradiation with blue light. This experimental approach is very straightforward, requires just simple hardware, and therefore can be easily implemented in state-of-the-art equipped mammalian cell culture labs. The system can be used for targeted cell signaling studies and biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wend S, Wagner HJ, Muller K et al (2014) Optogenetic control of protein kinase activity in mammalian cells. ACS Synth Biol 3(5):280–285. https://doi.org/10.1021/sb400090s

    Article  CAS  PubMed  Google Scholar 

  2. Beyer HM, Juillot S, Herbst K et al (2015) Red light-regulated reversible nuclear localization of proteins in mammalian cells and zebrafish. ACS Synth Biol 4(9):951–958. https://doi.org/10.1021/acssynbio.5b00004

    Article  CAS  PubMed  Google Scholar 

  3. Toettcher JE, Gong D, Lim WA et al (2011) Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 8(10):837–839. https://doi.org/10.1038/nmeth.1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levskaya A, Weiner OD, Lim WA et al (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266):997–1001. https://doi.org/10.1038/nature08446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andres J, Blomeier T, Zurbriggen MD (2019) Synthetic switches and regulatory circuits in plants. Plant Physiol 179(3):862–884. https://doi.org/10.1104/pp.18.01362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kolar K, Knobloch C, Stork H et al (2018) OptoBase: a web platform for molecular optogenetics. ACS Synth Biol 7(7):1825–1828. https://doi.org/10.1021/acssynbio.8b00120

    Article  CAS  PubMed  Google Scholar 

  7. Bonger KM, Chen LC, Liu CW et al (2011) Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat Chem Biol 7(8):531–537. https://doi.org/10.1038/Nchembio.598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muller K, Zurbriggen MD, Weber W (2014) Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch. Nat Protoc 9(3):622–632. https://doi.org/10.1038/nprot.2014.038

    Article  CAS  PubMed  Google Scholar 

  9. Frey AD, Rimann M, Bailey JE et al (2001) Novel pristinamycin-responsive expression systems for plant cells. Biotechnol Bioeng 74(2):154–163. https://doi.org/10.1002/bit.1105

    Article  CAS  PubMed  Google Scholar 

  10. Gossen M, Bujard H (1992) Tight control of gene-expression in mammalian-cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89(12):5547–5551. https://doi.org/10.1073/pnas.89.12.5547

    Article  CAS  PubMed  Google Scholar 

  11. Bonger KM, Rakhit R, Payumo AY et al (2014) General method for regulating protein stability with light. ACS Chem Biol 9(1):111–115. https://doi.org/10.1021/cb400755b

    Article  CAS  PubMed  Google Scholar 

  12. Pathak GP, Spiltoir JI, Hoglund C et al (2017) Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using &ITArabidopsis &ITcryptochrome 2. Nucleic Acids Res 45(20):e167. https://doi.org/10.1093/nar/gkx260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baaske J, Gonschorek P, Engesser R et al (2018) Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Sci Rep 8:15024. https://doi.org/10.1038/s41598-018-32929-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nash AI, McNulty R, Shillito ME et al (2011) Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc Natl Acad Sci U S A 108(23):9449–9454. https://doi.org/10.1073/pnas.1100262108

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rivera-Cancel G, Motta-Mena LB, Gardner KH (2012) Identification of natural and artificial DNA substrates for light-activated LOV-HTH transcription factor EL222. Biochemistry 51(50):10024–10034. https://doi.org/10.1021/bi301306t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moosmann P, Georgiev O, Thiesen HJ et al (1997) Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Kruppel-type zinc finger factor. Biol Chem 378(7):669–677. https://doi.org/10.1515/bchm.1997.378.7.669

    Article  CAS  PubMed  Google Scholar 

  17. Motta-Mena LB, Reade A, Mallory MJ et al (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10(3):196–202. https://doi.org/10.1038/Nchembio.1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7(3):683–694. https://doi.org/10.1016/S1097-2765(01)00214-3

    Article  CAS  PubMed  Google Scholar 

  19. Sax JK, Fei PW, Murphy ME et al (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4(11):842–849. https://doi.org/10.1038/ncb866

    Article  CAS  PubMed  Google Scholar 

  20. Deng J (2017) How to unleash mitochondrial apoptotic blockades to kill cancers? Acta Pharm Sin B 7(1):18–26. https://doi.org/10.1016/j.apsb.2016.08.005

    Article  PubMed  Google Scholar 

  21. Muller K, Engesser R, Metzger S et al (2013) A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res 41(7):e77. https://doi.org/10.1093/nar/gkt002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ochoa-Fernandez R, Samodelov SL, Brandl SM et al (2016) Optogenetics in plants: red/far-red light control of gene expression. Methods Mol Biol 1408:125–139. https://doi.org/10.1007/978-1-4939-3512-3_9

    Article  CAS  PubMed  Google Scholar 

  23. Beyer HM, Gonschorek P, Samodelov SL et al (2015) AQUA cloning: a versatile and simple enzyme-free cloning approach. PLoS One 10(9):e0137652. https://doi.org/10.1371/journal.pone.0137652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee JH, Soung YH, Lee JW et al (2004) Inactivating mutation of the pro-apoptotic gene BID in gastric cancer. J Pathol 202(4):439–445. https://doi.org/10.1002/path.1532

    Article  CAS  PubMed  Google Scholar 

  25. Giotopoulou N, Valiakou V, Papanikolaou V et al (2015) Ras suppressor-1 promotes apoptosis in breast cancer cells by inhibiting PINCH-1 and activating p53-upregulated-modulator of apoptosis (PUMA); verification from metastatic breast cancer human samples. Clin Exp Metastasis 32(3):255–265. https://doi.org/10.1007/s10585-015-9701-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Andres, L. Koch, and T. Blomeier for experimental support and fruitful discussions, and R. Wurm, M. Gerads, and J. Müller for valuable experimental support. This work was supported by the German Research Foundation (DFG) (grant ZU259/2-1 to M.D.Z. and under Germany’s Excellence Strategy CEPLAS—EXC-2048/1—Project ID 390686111 to M.D.Z., BIOSS—EXC-294 and CIBSS—EXC-2189—Project ID 390939984 to W.W.) and the European Commission—Research Executive Agency (H2020 Future and Emerging Technologies (FET-Open) Project ID 801041 CyGenTiG to J.A.D. and M.D.Z.).

Author contributions: P.F. designed the system and performed the experiments, analyzed the data, and wrote the protocol. P.G. and J.B. designed the system. J.D. designed experiments and analyzed the data. W.W. designed the system and experiments, and analyzed the data. M.D.Z. designed the system and experiments, analyzed the data, and wrote the protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matias D. Zurbriggen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fischbach, P., Gonschorek, P., Baaske, J., Davies, J.A., Weber, W., Zurbriggen, M.D. (2020). Optogenetic Downregulation of Protein Levels to Control Programmed Cell Death in Mammalian Cells with a Dual Blue-Light Switch. In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics