Skip to main content

Application of Targeting-Optimized Chronos for Stimulation of the Auditory Pathway

  • Protocol
  • First Online:
Channelrhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2191))

Abstract

In the last 15 years, optogenetics has revolutionized the life sciences and enabled studies of complex biological systems such as the brain. Applying optogenetics also has great potential for restorative medicine, such as hearing restoration, by stimulating genetically modified spiral ganglion neurons of the cochlea with light. To this end, opsins with short closing kinetics are required, given the high firing rates and utmost temporal precision of spiking in these neurons. Chronos is the fastest native blue channelrhodopsin (ChR) reported so far with a closing kinetics bellow 1 ms at body temperature and an interesting candidate for the development of the future optogenetic cochlear implants. This book chapter explains in more details the development and application of Chronos with optimized membrane targeting for temporally precise optical stimulation of spiral ganglion neurons. In addition, the generation of adeno-associated virus (AAV) and AAV delivery to the cochlea of postnatal mice and the procedure to record optically evoked auditory brainstem responses are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The direction to the cochlea and the position of the stapedial artery is preliminary defined by the approach described in [19].

References

  1. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. https://doi.org/10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  2. Adamantidis A, Arber S, Bains JS, Bamberg E, Bonci A, Buzsáki G, Cardin JA, Costa RM, Dan Y, Goda Y, Graybiel AM, Häusser M, Hegemann P, Huguenard JR, Insel TR, Janak PH, Johnston D, Josselyn SA, Koch C, Kreitzer AC, Lüscher C, Malenka RC, Miesenböck G, Nagel G, Roska B, Schnitzer MJ, Shenoy KV, Soltesz I, Sternson SM, Tsien RW, Tsien RY, Turrigiano GG, Tye KM, Wilson RI (2015) Optogenetics: 10 years after ChR2 in neurons—views from the community. Nat Neurosci 18:1202–1212. https://doi.org/10.1038/nn.4106

    Article  CAS  PubMed  Google Scholar 

  3. Kim CK, Adhikari A, Deisseroth K (2017) Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 18:222–235. https://doi.org/10.1038/nrn.2017.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sahel J-A, Roska B (2013) Gene therapy for blindness. Annu Rev Neurosci 36:467–488. https://doi.org/10.1146/annurev-neuro-062012-170304

    Article  CAS  PubMed  Google Scholar 

  5. Jeschke M, Moser T (2015) Considering optogenetic stimulation for cochlear implants. Hear Res 322:224–234. https://doi.org/10.1016/j.heares.2015.01.005

    Article  PubMed  Google Scholar 

  6. Ferenczi EA, Tan X, Huang CL-H (2019) Principles of optogenetic methods and their application to cardiac experimental systems. Front Physiol 10:1096. https://doi.org/10.3389/fphys.2019.01096

    Article  PubMed  PubMed Central  Google Scholar 

  7. Spencer NJ, Hibberd TJ, Lagerström M, Otsuka Y, Kelley N (2018) Visceral pain—Novel approaches for optogenetic control of spinal afferents. Brain Res 1693:159–164. https://doi.org/10.1016/j.brainres.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  8. Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D (2017) And Then there was light: perspectives of optogenetics for deep brain stimulation and neuromodulation. Front Neurosci 11:663. https://doi.org/10.3389/fnins.2017.00663

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kiang NY, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT, Cambridge

    Google Scholar 

  10. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK-S, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. https://doi.org/10.1038/nmeth.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duarte MJ, Kanumuri VV, Landegger LD, Tarabichi O, Sinha S, Meng X, Hight AE, Kozin ED, Stankovic KM, Brown MC, Lee DJ (2018) Ancestral adeno-associated virus vector delivery of opsins to spiral ganglion neurons: implications for optogenetic cochlear implants. Mol Ther 26:1931–1939. https://doi.org/10.1016/j.ymthe.2018.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keppeler D, Merino RM, Lopez de la Morena D, Bali B, Huet AT, Gehrt A, Wrobel C, Subramanian S, Dombrowski T, Wolf F, Rankovic V, Neef A, Moser T (2018) Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized chronos. EMBO J 37:e99649. https://doi.org/10.15252/embj.201899649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, Wu W-L, Yang B, Huber N, Pasca SP, Gradinaru V (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34:204–209. https://doi.org/10.1038/nbt.3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, Jan LY (2001) Role of ER export signals in controlling surface potassium channel numbers. Science 291:316–319. https://doi.org/10.1126/science.291.5502.316

    Article  CAS  PubMed  Google Scholar 

  15. Stockklausner C, Ludwig J, Ruppersberg JP, Klöcker N (2001) A sequence motif responsible for ER export and surface expression of Kir2.0 inward rectifier K(+) channels. FEBS Lett 493:129–133. https://doi.org/10.1016/s0014-5793(01)02286-4

    Article  CAS  PubMed  Google Scholar 

  16. Hofherr A, Fakler B, Klöcker N (2005) Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers. J Cell Sci 118:1935–1943. https://doi.org/10.1242/jcs.02322

    Article  CAS  PubMed  Google Scholar 

  17. Challis RC, Kumar SR, Chan KY, Challis C, Jang MJ, Rajendran PS, Tompkins JD, Shivkumar K, Deverman BE, Gradinaru V (2018) Widespread and targeted gene expression by systemic AAV vectors: Production, purification, and administration. https://doi.org/10.1101/246405

  18. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu W-L, Sánchez-Guardado L, Lois C, Mazmanian SK, Deverman BE, Gradinaru V (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20:1172–1179. https://doi.org/10.1038/nn.4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, Edwards RH, Lustig LR (2012) Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75:283–293. https://doi.org/10.1016/j.neuron.2012.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Daniela Gerke for expert help with virus and histology preparations. We thank Tobias Moser for critical reading of the manuscript and useful suggestions. We thank Ben Deverman and Viviana Gradinaru for providing the PHP.B construct, Edward S. Boyden for providing Chronos construct. The work was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 670759—advanced grant “OptoHear”) to Tobias Moser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladan Rankovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huet, A.T., Rankovic, V. (2021). Application of Targeting-Optimized Chronos for Stimulation of the Auditory Pathway. In: Dempski, R. (eds) Channelrhodopsin. Methods in Molecular Biology, vol 2191. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0830-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0830-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0829-6

  • Online ISBN: 978-1-0716-0830-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics