Skip to main content

Pathogenesis of Multiple Sclerosis: What Can We Learn from the Cuprizone Model

  • Protocol
  • First Online:
Autoimmunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 900))

Abstract

Multiple sclerosis is an inflammatory demyelinating and neurodegenerative disorder of the central nervous system (CNS). The primary cause of the disease remains unknown, but an altered immune regulation with features of autoimmunity has generally been considered to play a critical role in the pathogenesis. Historically, lesion development has been attributed to activation of CD4 and CD8 T lymphocytes, B lymphocytes, and monocytes in the peripheral circulation and the migration of these cells through the blood–brain barrier to exert direct or indirect cytotoxic effects on myelin, oligodendrocytes and neuronal processes in the CNS. This broadly accepted concept was significantly influenced by the experimental autoimmune encephalitis (EAE) model, in which either immunization with myelin antigens or injection of a myelin antigen-specific T cell line into a recipient results in inflammatory demyelination in the CNS. More recent studies reveal that the loss of oligodendrocytes and neurons begins in the earliest stages of the disease and may not always be associated with blood-derived inflammatory cells. The pathology affects both the white and the gray matters and the clinical disability best correlates with the overall neurodegenerative process. These newer observations prompted several revisions of the classical concept of MS and facilitated a shift from using EAE to using other model systems. This chapter summarizes the classical and more contemporary concepts of MS, and provides methodologies for employing the cuprizone model for further explorations of the pathogenesis and treatment of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett JL, Stüve O (2009) Update on inflammation, neurodegeneration, and immunoregulation in multiple sclerosis: therapeutic implications. Clin Neuropharmacol 32(3):121–132

    Article  PubMed  CAS  Google Scholar 

  2. Linthicum DS, Munoz JJ, Blaskett A (1982) Acute experimental autoimmune encephalomyelitis in mice. I. Adjuvant action of Bordetella pertussis is due to vasoactive amine sensitization and increased vascular permeability of the central nervous system. Cell Immunol 73(2):299–310

    Article  PubMed  CAS  Google Scholar 

  3. Westarp ME, Wekerle H, Ben-Nun A et al (1987) T lymphocyte line-mediated experimental allergic encephalomyelitis – a pharmacologic model for testing of immunosuppressive agents for the treatment of autoimmune central nervous system disease. J Pharmacol Exp Ther 242(2):614–620

    PubMed  CAS  Google Scholar 

  4. Steinman L (2010) Mixed results with modulation of TH-17 cells in human autoimmune diseases. Nat Immunol 11(1):41–44

    Article  PubMed  CAS  Google Scholar 

  5. Crome SQ, Wang AY, Levings MK (2010) Translational mini-review series on TH17 cells: function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol 159(2):109–119

    Article  PubMed  CAS  Google Scholar 

  6. O’Connor RA, Taams LS, Anderton SM (2010) Translational mini-review series on Th17 cells: CD4 T helper cells: functional plasticity and differential sensitivity to regulatory T cell-mediated regulation. Clin Exp Immunol 159(2):137–147

    Article  PubMed  CAS  Google Scholar 

  7. Correale J, Villa A (2010) Role of regulatory CD8+CD25+FoxP3+ T cells in multiple sclerosis. Ann Neurol 67(5):625–638

    PubMed  CAS  Google Scholar 

  8. Cepok S, Rosche B, Grummel V et al (2005) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128:1667–1676

    Article  PubMed  Google Scholar 

  9. Qin Y, Duquette P, Zhang Y et al (1998) Clonal expansion and somatic hypermutation of Vh genes of B cells from the cerebrospinal fluid in multiple sclerosis. J Clin Invest 102:1045–1050

    Article  PubMed  CAS  Google Scholar 

  10. Owens GP, Burgoon MP, Anthony J et al (2001) The immunoglobulin G heavy chain repertoire in multiple sclerosis plaques is distinct from the heavy chain repertoire in peripheral blood lymphocytes. Clin Immunol 98:258–263

    Article  PubMed  CAS  Google Scholar 

  11. Monson NL, Brezinschek HP, Brezinschek RI et al (2005) Receptor revision and atypical mutational characteristics in clonally expanded B cells from the cerebrospinal fluid of recently diagnosed multiple sclerosis patients. J Neuroimmunol 158(1–2):170–181

    Article  PubMed  CAS  Google Scholar 

  12. Lambracht-Washington D, O’Connor KC, Cameron EM et al (2007) Antigen specificity of clonally expanded and receptor edited cerebrospinal fluid B cells from patients with relapsing remitting MS. J Neuroimmunol 186(1–2):164–176

    Article  PubMed  CAS  Google Scholar 

  13. Serafini B, Rosicarelli B, Magliozzi R et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14(2):164–174

    Article  PubMed  Google Scholar 

  14. Willis SN, Stadelmann C, Rodig SJ et al (2009) Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132(Pt 12):3318–3328

    Article  PubMed  Google Scholar 

  15. Lucchinetti C, Brück W, Noseworthy J (2001) Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Curr Opin Neurol 14(3):259–269

    Article  PubMed  CAS  Google Scholar 

  16. Stoeckle C, Tolosa E (2009) Antigen processing and presentation in multiple sclerosis. Results Probl Cell Differ 2010;51:149–172

    Google Scholar 

  17. Goodin DS, Cohen BA, O’Connor P et al (2008) Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: the use of natalizumab (Tysabri) for the treatment of multiple sclerosis (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 71(10):766–773

    Google Scholar 

  18. Hauser SL, Waubant E, Arnold DL et al (2008) HERMES Trial Group. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688

    Google Scholar 

  19. Bar-Or A, Calabresi PA, Arnold D et al (2008) Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 63(3):395–400

    Article  PubMed  CAS  Google Scholar 

  20. Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  21. Trapp BD, Bo L, Mork S, Chang A (1999) Pathogenesis of tissue injury in MS lesions. J Neuroimmunol 98:49–56

    Article  PubMed  CAS  Google Scholar 

  22. Peterson JW, Bo L, Mork S, Chang A et al (2002) VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J Neuropathol Exp Neurol 61:539–546

    PubMed  Google Scholar 

  23. Kutzelnigg A, Lucchinetti CF, Stadelmann C (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712

    Article  PubMed  Google Scholar 

  24. Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  PubMed  CAS  Google Scholar 

  25. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    Article  PubMed  Google Scholar 

  26. Henderson AP, Barnett MH, Parratt JD, Prineas JW et al (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66:739–753

    Article  PubMed  Google Scholar 

  27. Barnett MH, Sutton I (2006) The pathology of multiple sclerosis: a paradigm shift. Curr Opin Neurol 19:242–247

    Article  PubMed  Google Scholar 

  28. Breij EC, Brink BP, Veerhuis R et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63(1):16–25

    Article  PubMed  CAS  Google Scholar 

  29. Peterson JW, Bo L, Mork S et al (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    Article  PubMed  CAS  Google Scholar 

  30. Vercellino M, Plano F, Votta B et al (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107

    Article  PubMed  Google Scholar 

  31. Wegener C, Esiri MM, Chance SA et al (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967

    Article  Google Scholar 

  32. Zipp F (2000) Apoptosis in multiple sclerosis. Cell Tissue Res 301(1):163–171

    Article  PubMed  CAS  Google Scholar 

  33. Hestvik AL, Skorstad G, Vartdal F et al (2009) Idiotype-specific CD4+ T cell induced apoptosis of human oligodendrocytes. J Autoimmun 32(2):125–132

    Article  PubMed  CAS  Google Scholar 

  34. Lu F, Selak M, O’Connor J et al (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in lesions of multiple sclerosis. J Neurol Sci 177:95–103

    Article  PubMed  CAS  Google Scholar 

  35. Kalman B, Albert RH, Leist TP (2002) Genetics of multiple sclerosis: determinants of autoimmunity and neurodegeneration. Autoimmunity 35(4):225–234

    Article  PubMed  CAS  Google Scholar 

  36. Kalman B, Laitinen K, Komoly S (2007) The involvement of mitochondria in the pathogenesis of multiple sclerosis. J Neuroimmunol 188(1–2):1–12

    Article  PubMed  CAS  Google Scholar 

  37. Kalman B (2006) Role of Mitochondria in MS. Curr Neurol Neurosci Rep 6:244–252

    Article  PubMed  CAS  Google Scholar 

  38. Bo L, Dawson TM, Wesselingh S et al (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778–786

    Article  PubMed  CAS  Google Scholar 

  39. Cross AH, Manning PT, Stern MK et al (1997) Evidence for the production of peroxynitrite in inflammatory CNS demyelination. J Neuroimmunol 80:121–130

    Article  PubMed  CAS  Google Scholar 

  40. Vladimirova O, O’Connor J, Cahill A et al (1998) Oxidative damage to DNA in plaques of MS brains. Mult Scler 4:413–418

    PubMed  CAS  Google Scholar 

  41. Powell T, Sussman JG, Davies-Jones GA (1992) MR imaging in acute multiple sclerosis: ringlike appearance in plaques suggesting the presence of paramagnetic free radicals. Am J Neurorad 13:1544–1546

    CAS  Google Scholar 

  42. Hooper DC, Bagasra O, Marini JC et al (1997) Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxinitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci 94:2528–2533

    Article  PubMed  CAS  Google Scholar 

  43. Blokhin A, Vyshkina T, Komoly S et al (2008) Lack of mitochondrial DNA deletions in lesion of multiple sclerosis. Neuromolecular Med 10:187–194

    Article  PubMed  CAS  Google Scholar 

  44. Dutta R, McDonough J, Yin X et al (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    Article  PubMed  CAS  Google Scholar 

  45. Mahad D, Lassmann H, Turnbull D (2008) Review: mitochondria and disease progression in multiple sclerosis. Neuropathol Appl Neurobiol 34(6):577–589

    Article  PubMed  CAS  Google Scholar 

  46. Mahad DJ, Ziabreva I, Campbell G et al (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132(Pt 5):1161–1174

    Article  PubMed  Google Scholar 

  47. Mahad D, Ziabreva I, Lassmann H et al (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131(Pt 7):1722–1735

    Article  PubMed  Google Scholar 

  48. Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Review. Lancet Neurol 8:280–291

    Article  PubMed  CAS  Google Scholar 

  49. Aboul-Enein F, Lassmann H (2005) Mitochondrial damage and histotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease? Acta Neuropathol (Berl) 109:49–55

    Article  CAS  Google Scholar 

  50. Stadelmann C, Ludwin S, Tabira T et al (2005) Tissue preconditioning may explain concentric lesions in Balo’s type of multiple sclerosis. Brain 128:979–987

    Article  PubMed  Google Scholar 

  51. Graumann U, Reynolds R, Steck AJ et al (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573

    Article  PubMed  CAS  Google Scholar 

  52. Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest 39:597–612

    PubMed  CAS  Google Scholar 

  53. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116

    Article  PubMed  CAS  Google Scholar 

  54. Lindner M, Fokuhl J, Linsmeier F et al (2009) Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci Lett 453:120–125

    Article  PubMed  CAS  Google Scholar 

  55. Veto S, Acs P, Bauer J et al (2010) Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain 133:822–834

    Article  PubMed  Google Scholar 

  56. Komoly S (2005) Experimental demyelination caused by primary oligodendrocyte dystrophy. Regional distribution of the lesions in the nervous system of mice [corrected]. Ideggyogy Sz 58:40–43

    PubMed  Google Scholar 

  57. Kipp M, Clarner T, Dang J (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118:723–736

    Article  PubMed  Google Scholar 

  58. Remington LT, Babcock AA, Zehntner SP et al (2007) Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol 170(5):1713–1724

    Article  PubMed  Google Scholar 

  59. Pasquini LA, Calatayud CA, Bertone Una AL et al (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32:279–292

    Article  PubMed  CAS  Google Scholar 

  60. Acs P, Kipp M, Norkute A et al (2009) 17b-Estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57:807–814

    Article  PubMed  Google Scholar 

  61. Lindner M, Heine S, Haastert K et al (2008) Sequential myelin protein expression during remyelination reveals fast and efficient repair after central nervous system demyelination. Neuropathol Appl Neurobiol 34:105–114

    PubMed  CAS  Google Scholar 

  62. Armstrong RC (2007) Growth factor regulation of remyelination: behind the growing interest in endogenous cell repair of the CNS. Future Neurol 2:689–697

    Article  PubMed  CAS  Google Scholar 

  63. Morell P, Barrett CV, Mason JL et al (1998) Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol Cell Neurosci 12:220–227

    Article  PubMed  CAS  Google Scholar 

  64. Taylor LC, Gilmore W, Matsushima GK (2009) SJL mice exposed to cuprizone intoxication reveal strain and gender pattern differences in demyelination. Brain Pathol 19:467–479

    Article  PubMed  CAS  Google Scholar 

  65. Hiremath MM, Saito Y, Knapp GW et al (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92:38–49

    Article  PubMed  CAS  Google Scholar 

  66. Palkovits M (1983) Punch sampling biopsy technique. Methods Enzymol 103:368–376

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Kalman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Acs, P., Kalman, B. (2012). Pathogenesis of Multiple Sclerosis: What Can We Learn from the Cuprizone Model. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Biology, vol 900. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-720-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-720-4_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-719-8

  • Online ISBN: 978-1-60761-720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics