Skip to main content

Using the Four-Cell C. elegans Embryo to Study Contractile Ring Dynamics During Cytokinesis

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

Cytokinesis is the process that completes cell division by partitioning the contents of the mother cell between the two daughter cells. It involves the highly regulated assembly and constriction of an actomyosin contractile ring, whose function is to pinch the mother cell in two. Research on the contractile ring has particularly focused on the signaling mechanisms that dictate when and where the ring is formed. In vivo studies of ring constriction are however scarce and its mechanistic understanding is therefore limited. Here we present several experimental approaches for monitoring ring constriction in vivo, using the four-cell C. elegans embryo as model. These approaches allow for the ring to be perturbed only after it forms and include the combination of live imaging with acute drug treatments, temperature-sensitive mutants and rapid temperature shifts, as well as laser microsurgery. In addition, we explain how to combine these with RNAi-mediated depletion of specific components of the cytokinetic machinery.

Fung Yi Chan and Ana Marta Silva are first co-authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lens SMA, Medema RH (2019) Cytokinesis defects and cancer. Nat Rev Cancer 19:32–45

    Article  CAS  PubMed  Google Scholar 

  2. Henson JH, Ditzler CE, Germain A et al (2017) The ultrastructural organization of actin and myosin II filaments in the contractile ring: new support for an old model of cytokinesis. Mol Biol Cell 28:613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kamasaki T, Osumi M, Mabuchi I (2007) Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. J Cell Biol 178:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maupin P, Pollard TD (1986) Arrangement of actin filaments and myosin-like filaments in the contractile ring and of actin-like filaments in the mitotic spindle of dividing HeLa cells. J Ultrastruct Mol Struct Res 94:92–103

    Article  CAS  PubMed  Google Scholar 

  5. Sanger JM, Sanger JW (1980) Banding and polarity of actin filaments in interphase and cleaving cells. J Cell Biol 86:568–575

    Article  CAS  PubMed  Google Scholar 

  6. Schroeder TE (1973) Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A 70:1688–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Green R, Paluch E, Oegema K (2012) Cytokinesis in animal cells. Annu Rev Cell Dev Biol 28:29–58

    Article  CAS  PubMed  Google Scholar 

  8. Guillot C, Lecuit T (2013) Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues. Dev Cell 24:227–241

    Article  CAS  PubMed  Google Scholar 

  9. Pinheiro D, Hannezo E, Herszterg S et al (2017) Transmission of cytokinesis forces via E-cadherin dilution and actomyosin flows. Nature 545:103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Higashi T, Stephenson RE, Miller AL (2019) Comprehensive analysis of formin localization in Xenopus epithelial cells. Mol Biol Cell 30:82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lázaro-Diéguez F, Müsch A (2017) Cell-cell adhesion accounts for the different orientation of columnar and hepatocytic cell divisions. J Cell Biol 216:3847–3859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Maddox AS, Lewellyn L, Desai A, Oegema K (2007) Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev Cell 12:827–835

    Article  CAS  PubMed  Google Scholar 

  13. Carvalho A, Desai A, Oegema K (2009) Structural memory in the contractile ring makes the duration of cytokinesis independent of cell size. Cell 137:926–937

    Article  CAS  PubMed  Google Scholar 

  14. Lewellyn L, Carvalho A, Desai A et al (2011) The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly. J Cell Biol 193:155–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Canman JC, Lewellyn L, Laband K et al (2008) Inhibition of Rac by the GAP activity of centralspindlin is essential for cytokinesis. Science 322:1543–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jordan SN, Davies T, Zhuravlev Y et al (2016) Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division. J Cell Biol 212:39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan FY, Silva AM, Saramago J et al (2019) The ARP2/3 complex prevents excessive formin activity during cytokinesis. Mol Biol Cell 30:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davies T, Sundaramoorthy S, Jordan SN et al (2017) Using fast-acting temperature-sensitive mutants to study cell division in Caenorhabditis elegans. Methods Cell Biol 137:283–306

    Article  CAS  PubMed  Google Scholar 

  19. Dhaliwal A (2013) Activators and inhibitors in cell biology research. Mater Methods 3:185–200

    Google Scholar 

  20. Carvalho A, Olson SK, Gutierrez E et al (2011) Acute drug treatment in the early C. elegans embryo. PLoS One 6:e24656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mandato CA, Bement WM (2001) Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J Cell Biol 154:785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar S, Maxwell IZ, Heisterkamp A et al (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90:3762–3773

    Google Scholar 

  23. Colombelli J, Besser A, Kress H et al (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122:1665–1679

    Article  CAS  PubMed  Google Scholar 

  24. Tinevez J-Y, Schulze U, Salbreux G et al (2009) Role of cortical tension in bleb growth. Proc Natl Acad Sci U S A 106:18581–18586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herszterg S, Leibfried A, Bosveld F et al (2013) Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue. Dev Cell 24:256–270

    Article  CAS  PubMed  Google Scholar 

  26. Grill SW, Gönczy P, Stelzer EH, Hyman AA (2001) Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409:630–633

    Article  CAS  PubMed  Google Scholar 

  27. Bringmann H, Cowan CR, Kong J, Hyman AA (2007) LET-99, GOA-1/GPA-16, and GPR-1/2 are required for aster-positioned cytokinesis. Curr Biol 17:185–191

    Article  CAS  PubMed  Google Scholar 

  28. Cowan CR, Hyman AA (2004) Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431:92–96

    Article  CAS  PubMed  Google Scholar 

  29. Grill SW (2003) The distribution of active force generators controls mitotic spindle position. Science 301:518–521

    Article  CAS  PubMed  Google Scholar 

  30. Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81:208–219

    Article  CAS  PubMed  Google Scholar 

  31. Priti A, Ong HT, Toyama Y et al (2018) Syncytial germline architecture is actively maintained by contraction of an internal actomyosin corset. Nat Commun 9:4694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Vuong-Brender TTK, Amar, BM, Pontabry J, Labouesse M (2017) The interplay of stiffness and force anisotropies drives embryo elongation. elife 6:e23866

    Google Scholar 

  33. Pereira AJ, Matos I, Lince-Faria M, Maiato H (2009) Dissecting mitosis with laser microsurgery and RNAi in Drosophila cells. Methods Mol Biol 545:145–164

    Article  PubMed  Google Scholar 

  34. Silva AM, Osório DS, Pereira AJ et al (2016) Robust gap repair in the contractile ring ensures timely completion of cytokinesis. J Cell Biol 215:789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wollrab V, Thiagarajan R, Wald A et al (2016) Still and rotating myosin clusters determine cytokinetic ring constriction. Nat Commun 7:11860

    Google Scholar 

  36. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  37. Oegema K, Hyman A (2006) Cell division. Wormbook 19:1–40

    Google Scholar 

  38. Green RA, Kao HL, Audhya A et al (2011) A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell 145:470–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riedl J, Crevenna AH, Kessenbrock K et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  43. Hyman AA, White JG (1987) Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol 105:2123–2135

    Article  CAS  PubMed  Google Scholar 

  44. Kashman Y, Groweiss A, Shmueli U (1980) Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge latrunculia magnifica. Tetrahedron Lett 21:3629–3632

    Article  CAS  Google Scholar 

  45. Morton WM, Ayscough KR, McLaughlin PJ (2000) Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol 2:376–378

    Article  CAS  PubMed  Google Scholar 

  46. Conte D Jr, MacNeil LT, Walhout AJM, Mello CC (2015) RNA interference in Caenorhabditis elegans. Curr Protoc Mol Biol 109:26.3.1–26.330

    Article  Google Scholar 

  47. Kamath RS, Fraser AG, Dong Y et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  CAS  PubMed  Google Scholar 

  48. Rodriguez J, Peglion F, Martin J et al (2017) aPKC cycles between functionally distinct PAR protein assemblies to drive cell polarity. Dev Cell 42:400–415.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zulueta-Coarasa T, Fernandez-Gonzalez R (2017) Tension (re)builds: biophysical mechanisms of embryonic wound repair. Mech Dev 144:43–52

    Article  CAS  PubMed  Google Scholar 

  50. Davies T, Jordan SN, Chand V et al (2014) High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis. Dev Cell 30:209–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu J, Maduzia LL, Shirayama M, Mello CC (2010) NMY-2 maintains cellular asymmetry and cell boundaries, and promotes a SRC-dependent asymmetric cell division. Dev Biol 339:366–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O’Connell KF, Leys CM, White JG (1998) A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 149:1303–1321

    Article  PubMed  PubMed Central  Google Scholar 

  53. Severson AF, Hamill DR, Carter JC et al (2000) The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 10:1162–1171

    Article  CAS  PubMed  Google Scholar 

  54. Pavicic-Kaltenbrunner V, Mishima M, Glotzer M (2007) Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex. Mol Biol Cell 18:4992–5003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Willis JH, Munro E, Lyczak R, Bowerman B (2006) Conditional dominant mutations in the Caenorhabditis elegans gene act-2 identify cytoplasmic and muscle roles for a redundant actin isoform. Mol Biol Cell 17:1051–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Diogon M, Wissler F, Quintin S et al (2007) The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis. Development 134:2469–2479

    Article  CAS  PubMed  Google Scholar 

  57. Kemphues KJ, Kusch M, Wolf N (1988) Maternal-effect lethal mutations on linkage group II of Caenorhabditis elegans. Genetics 120:977–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wissmann A, Ingles J, Mains PE (1999) The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway. Dev Biol 209:111–127

    Article  CAS  PubMed  Google Scholar 

  59. Spilker AC, Rabilotta A, Zbinden C, Labbé J-C, Gotta M (2009) MAP kinase signaling antagonizes PAR-1 function during polarization of the early Caenorhabditis elegans embryo. Genetics 183:965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morton DG, Roos JM, Kemphues KJ (1992) Par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis. Genetics 130:771–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fievet BT, Rodriguez J, Naganathan S et al (2013) Systematic genetic interaction screens uncover cell polarity regulators and functional redundancy. Nat Cell Biol 15:103–112

    Article  CAS  PubMed  Google Scholar 

  62. Fujiwara I, Zweifel ME, Courtemanche N, Pollard TD (2018) Latrunculin A accelerates actin filament depolymerization in addition to sequestering actin monomers. Curr Biol 28:3183–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bubb MR, Spector I, Beyer BB, Fosen KM (2000) Effects of jasplakinolide on the kinetics of actin polymerization. J Biol Chem 275:5163–5170

    Article  CAS  PubMed  Google Scholar 

  64. Crews P, Manes LV, Boehler M (1986) Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis SP. Tetrahedron Lett 26:2797–2800

    Google Scholar 

  65. Zabriskie TM, Klocke JA, Ireland CM et al (1986) Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. J Am Chem Soc 108:3123–3124

    Google Scholar 

  66. Scholze MJ, Barbieux KS, De Simone A et al (2018) PI(4,5)P2 forms dynamic cortical structures and directs actin distribution as well as polarity in Caenorhabditis elegans embryos. Development 145:164988

    Article  CAS  Google Scholar 

  67. Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  CAS  PubMed  Google Scholar 

  68. Berends CWH, Muñoz J, Portegijs V et al (2013) F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo. Mol Biol Cell 24:2201–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Straight AF (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299:1743–1747

    Article  CAS  PubMed  Google Scholar 

  70. Straight AF, Field CM, Mitchison TJ (2005) Anillin binds nonmuscle myosin II and regulates the contractile ring. Mol Biol Cell 16:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kepiro M, Varkuti BH, Bodor A et al (2012) Azidoblebbistatin, a photoreactive myosin inhibitor. Proc Natl Acad Sci U S A 109:9402–9407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Képiró M, Várkuti BH, Végner L et al (2014) Para-nitroblebbistatin, the non-cytotoxic and photostable myosin II inhibitor. Angew Chem 53:8350–8354

    Article  Google Scholar 

  73. Bubb MR, Spector I, Bershadsky AD, Korn ED (1995) Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. J Biol Chem 270:3463–3466

    Article  CAS  PubMed  Google Scholar 

  74. Klenchin VA, King R, Tanaka J, Marriott G, Rayment I (2005) Structural basis of swinholide A binding to actin. Chem Biol 12:287–291

    Article  CAS  PubMed  Google Scholar 

  75. Nolen BJ, Tomasevic N, Russell A et al (2009) Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460:1031–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rizvi SA, Neidt EM, Cui J et al (2009) Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem Biol 16:1158–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Panzica MT, Marin HC, Reymann A-C, McNally FJ (2017) F-actin prevents interaction between sperm DNA and the oocyte meiotic spindle in C. elegans. J Cell Biol 216:2273–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steegmaier M, Hoffmann M, Baum A et al (2007) BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 17:316–322

    Article  CAS  PubMed  Google Scholar 

  79. Ishizaki T, Uehata M, Tamechika I et al (2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol 57:976–983

    CAS  PubMed  Google Scholar 

  80. Saitoh M, Ishikawa T, Matsushima S et al (1987) Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem 262:7796–7801

    Article  CAS  PubMed  Google Scholar 

  81. Hoar K, Chakravarty A, Rabino C et al (2007) MLN8054, a small-molecule inhibitor of Aurora a, causes spindle pole and chromosome Congression defects leading to aneuploidy. Mol Cell Biol 27:4513–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Manfredi MG, Ecsedy JA, Meetze KA et al (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci U S A 104:4106–4111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hauf S, Cole RW, LaTerra S et al (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harrington EA, Bebbington D, Moore J et al (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10:262–267

    Article  CAS  PubMed  Google Scholar 

  85. Kotak S, Afshar K, Busso C, Gönczy P (2016) Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells. J Cell Sci 129:3015–3025

    CAS  PubMed  Google Scholar 

  86. Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    Article  CAS  PubMed  Google Scholar 

  87. O’Connell CB, Wheatley SP, Ahmed S, Wang YL (1999) The small GTP-binding protein rho regulates cortical activities in cultured cells during division. J Cell Biol 144:305–313

    Article  PubMed  PubMed Central  Google Scholar 

  88. Genth H, Gerhard R, Maeda A et al (2003) Entrapment of rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the rho-guanine nucleotide dissociation inhibitor-1 complex. J Biol Chem 278:28523–28527

    Article  CAS  PubMed  Google Scholar 

  89. De Brabander M, Borgers M (1975) The formation of annulated lamellae induced by the disintegration of microtubules. J Cell Sci 19:331–340

    Article  PubMed  Google Scholar 

  90. Hoebeke J, Van Nijen G, De Brabander M (1976) Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem Biophys Res Commun 69:319–324

    Article  CAS  PubMed  Google Scholar 

  91. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  CAS  PubMed  Google Scholar 

  92. Lee J-Y, Goldstein B (2003) Mechanisms of cell positioning during C. elegans gastrulation. Development 130:307–320

    Article  CAS  PubMed  Google Scholar 

  93. Sternlicht H, Ringel I, Szasz J (1980) The co-polymerization of tubulin and tubulin colchicine complex in the absence and presence of associated proteins. J Biol Chem 255:9138–9148

    Article  CAS  PubMed  Google Scholar 

  94. Losiewicz MD, Carlson BA, Kaur G et al (1994) Potent inhibition of CDC2 kinase activity by the flavonoid L86-8275. Biochem Biophys Res Commun 201:589–595

    Article  CAS  PubMed  Google Scholar 

  95. Potapova TA, Daum JR, Pittman BD et al (2006) The reversibility of mitotic exit in vertebrate cells. Nature 440:954–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vassilev LT, Tovar C, Chen S et al (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 103:10660–10665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kjær S, Linch M, Purkiss A et al (2013) Adenosine-binding motif mimicry and cellular effects of a thieno[2,3-d]pyrimidine-based chemical inhibitor of atypical protein kinase C isoenzymes. Biochem J 451:329–342

    Article  PubMed  CAS  Google Scholar 

  98. Dorsey BD, Learn KS, Morris EL, et al (2017) Thienopyrimidine inhibitors of atypical protein kinase C. US Patent WO 2013078126 A1, 19 Nov, 2012

    Google Scholar 

Download references

Acknowledgments

Research in our group receives funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme to AXC (grant agreement 640553—ACTOMYO) and from Norte-01-0145-FEDER-000029—Advancing Cancer Research: from basic knowledge to application, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). AXC has a Principal Investigator position from FCT (CEECIND/01967/2017). FYC and AMS hold FCT junior researcher positions DL 57/2016/CP1355/CT0013 and DL 57/2016/CP1355/CT0017, respectively. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Xavier Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chan, F.Y., Silva, A.M., Carvalho, A.X. (2020). Using the Four-Cell C. elegans Embryo to Study Contractile Ring Dynamics During Cytokinesis. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics