Skip to main content

Structural Characterization of Protein–Protein Interactions with pyDockSAXS

  • Protocol
  • First Online:
Structural Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2112))

Abstract

Structural characterization of protein–protein interactions can provide essential details to understand biological functions at the molecular level and to facilitate their manipulation for biotechnological and biomedical purposes. Unfortunately, the 3D structure is available for only a small fraction of all possible protein–protein interactions, due to the technical limitations of high-resolution structural determination methods. In this context, low-resolution structural techniques, such as small-angle X-ray scattering (SAXS), can be combined with computational docking to provide structural models of protein–protein interactions at large scale. In this chapter, we describe the pyDockSAXS web server (https://life.bsc.es/pid/pydocksaxs), which uses pyDock docking and scoring to provide structural models that optimally satisfy the input SAXS data. This server, which is freely available to the scientific community, provides an automatic pipeline to model the structure of a protein–protein complex from SAXS data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch MH, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36:147–227

    Article  CAS  Google Scholar 

  2. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285

    Article  CAS  Google Scholar 

  3. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology—expanding the frontier while avoiding the pitfalls. Protein Sci 19:642–657

    Article  CAS  Google Scholar 

  4. Cordeiro TN, Herranz-Trillo F, Urbanek A, Estaña A, Cortés J, Sibille N, Bernadó P (2017) Small-angle scattering studies of intrinsically disordered proteins and their complexes. Curr Opin Struct Biol 42:15–23

    Article  CAS  Google Scholar 

  5. Bernadó P, Shimizu N, Zaccai G, Kamikubo H, Sugiyama M (2018) Solution scattering approaches to dynamical ordering in biomolecular systems. Biochim Biophys Acta Gen Subj 1862:253–274

    Article  Google Scholar 

  6. Hub JS (2018) Interpreting solution X-ray scattering data using molecular simulations. Curr Opin Struct Biol 49:18–26

    Article  CAS  Google Scholar 

  7. Yang S (2014) Methods for SAXS-based structure determination of biomolecular complexes. Adv Mater 26:7902–7910

    Article  CAS  Google Scholar 

  8. Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89:1237–1250

    Article  CAS  Google Scholar 

  9. Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9:1–15

    Article  CAS  Google Scholar 

  10. Pons C, D’Abramo M, Svergun DI, Orozco M, Bernado P, Fernandez-Recio J (2010) Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data. J Mol Biol 403:217–230

    Article  CAS  Google Scholar 

  11. Schneidman-Duhovny D, Hammel M, Sali A (2011) Macromolecular docking restrained by a small angle X-ray scattering profile. J Struct Biol 173:461–471

    Article  CAS  Google Scholar 

  12. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2016) FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res 44(W1):W424–W429

    Article  CAS  Google Scholar 

  13. Sønderby P, Rinnan Å, Madsen JJ, Harris P, Bukrinski JT, Peters GHJ (2017) Small-angle X-ray scattering data in combination with RosettaDock improves the docking energy landscape. J Chem Inf Model 57:2463–2475

    Article  Google Scholar 

  14. Schindler CEM, de Vries SJ, Sasse A, Zacharias M (2016) SAXS data alone can generate high-quality models of protein-protein complexes. Structure 24:1387–1397

    Article  CAS  Google Scholar 

  15. Schneidman-Duhovny D, Hammel M (2018) Modeling structure and dynamics of protein complexes with SAXS profiles. Methods Mol Biol 1764:449–473

    Article  CAS  Google Scholar 

  16. Bonvin AMJJ, Karaca E (2013) On the usefulness of ion-mobility mass spectrometry and SAXS data in scoring docking decoys. Acta Crystallogr D Biol Crystallogr 69:683–694

    Article  Google Scholar 

  17. Jiménez-García B, Pons C, Svergun DI, Bernadó P, Fernández-Recio J (2015) pyDockSAXS: protein–protein complex structure by SAXS and computational docking. Nucleic Acids Res 43(W1):W356–W356

    Article  Google Scholar 

  18. Svergun DI, Barberato C, Koch MHJ (1995) CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  19. Gabb HA, Jackson RM, Sternberg MJ (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272:106–120

    Article  CAS  Google Scholar 

  20. Cheng TM, Blundell TL, Fernandez-Recio J (2007) pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 68:503–515

    Article  CAS  Google Scholar 

  21. Wang Q, Canutescu AA, Dunbrack RL Jr (2008) SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling. Nat Protoc 3:1832–1847

    Article  CAS  Google Scholar 

  22. Jiménez-García B, Pons C, Fernández-Recio J (2013) pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29:1698–1699

    Article  Google Scholar 

  23. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science (grant BIO2016-79930-R), the European Union H2020 programme (grant MuG 676566), and the Labex EpiGenMed, an “Investissements d’avenir” program (ANR-10-LABX-12-01). The CBS is a member of France-BioImaging (FBI) and the French Infrastructure for Integrated Structural Biology (FRISBI), two national infrastructures supported by the French National Research Agency (ANR-10-INSB-04-01 and ANR-10-INSB-05, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Fernández-Recio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jiménez-García, B., Bernadó, P., Fernández-Recio, J. (2020). Structural Characterization of Protein–Protein Interactions with pyDockSAXS. In: Gáspári, Z. (eds) Structural Bioinformatics. Methods in Molecular Biology, vol 2112. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0270-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0270-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0269-0

  • Online ISBN: 978-1-0716-0270-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics