Skip to main content

Experimental Competitive Bone Marrow Transplant Assays

  • Protocol
  • First Online:
Leukemia Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2185))

Abstract

Hematopoietic stem cells have the ability to produce all blood cells. When hematological malignancies occur, transplant of compatible blood or bone marrow cells from a healthy donor to the patient is an efficient solution to restore normal hematopoiesis. Bone marrow transplant in a mouse model is often used to study HSC function and capacity to repopulate an irradiated recipient. This protocol details the different steps of a competitive bone marrow transplant experiment, beginning with total body irradiation of the recipient mice; preparation and administration of the donor and competitor bone marrow samples; peripheral blood analysis to follow reconstitution posttransplant; and finally, the analysis of recipient bone marrow and secondary transplants to evaluate long-term HSC function. Different formulas used to establish transplant efficiency are explained. All the steps are discussed in detail, including tips, variations, and alternative procedures with their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayle A, Luo M, Jeong M, Goodell MA (2013) Flow cytometry analysis of murine hematopoietic stem cells. Cytometry Part A 83(1):27–37. https://doi.org/10.1002/cyto.a.22093

    Article  CAS  Google Scholar 

  2. Gyurkocza B, Rezvani A, Storb RF (2010) Allogeneic hematopoietic cell transplantation: the state of the art. Expert Rev Hematol 3(3):285–299. https://doi.org/10.1586/ehm.10.21

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li HW, Sykes M (2012) Emerging concepts in haematopoietic cell transplantation. Nat Rev Immunol 12(6):403–416. https://doi.org/10.1038/nri3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blazar BR, Murphy WJ, Abedi M (2012) Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol 12(6):443–458. https://doi.org/10.1038/nri3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121. https://doi.org/10.1016/j.cell.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  6. Till JE, Mc CE (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  CAS  PubMed  Google Scholar 

  7. Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1(6):635–645. https://doi.org/10.1016/j.stem.2007.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rossi L, Lin KK, Boles NC, Yang L, King KY, Jeong M, Mayle A, Goodell MA (2012) Less is more: unveiling the functional core of hematopoietic stem cells through knockout mice. Cell Stem Cell 11(3):302–317. https://doi.org/10.1016/j.stem.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen FW, Saga Y, Litman G, Freeman G, Tung JS, Cantor H, Boyse EA (1985) Cloning of Ly-5 cDNA. Proc Natl Acad Sci U S A 82(21):7360–7363. https://doi.org/10.1073/pnas.82.21.7360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rundberg Nilsson A, Bryder D, Pronk CJ (2013) Frequency determination of rare populations by flow cytometry: a hematopoietic stem cell perspective. Cytometry Part A 83(8):721–727. https://doi.org/10.1002/cyto.a.22324

    Article  Google Scholar 

  11. Kwarteng EO, Hetu-Arbour R, Heinonen KM (2018) Frontline science: Wnt/beta-catenin pathway promotes early engraftment of fetal hematopoietic stem/progenitor cells. J Leukoc Biol 103(3):381–393. https://doi.org/10.1002/JLB.1HI0917-373R

    Article  CAS  PubMed  Google Scholar 

  12. Kwarteng EO, Heinonen KM (2016) Competitive transplants to evaluate hematopoietic stem cell fitness. J Vis Exp 114:54345. https://doi.org/10.3791/54345

    Article  CAS  Google Scholar 

  13. Abidin BM, Owusu Kwarteng E, Heinonen KM (2015) Frizzled-6 regulates hematopoietic stem/progenitor cell survival and self-renewal. J Immunol 195(5):2168–2176. https://doi.org/10.4049/jimmunol.1403213

    Article  CAS  PubMed  Google Scholar 

  14. Heinonen KM, Vanegas JR, Lew D, Krosl J, Perreault C (2011) Wnt4 enhances murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway. PLoS One 6(4):e19279. https://doi.org/10.1371/journal.pone.0019279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui YZ, Hisha H, Yang GX, Fan TX, Jin T, Li Q, Lian Z, Ikehara S (2002) Optimal protocol for total body irradiation for allogeneic bone marrow transplantation in mice. Bone Marrow Transplant 30(12):843–849. https://doi.org/10.1038/sj.bmt.1703766

    Article  PubMed  Google Scholar 

  16. Eaves CJ (2015) Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125(17):2605–2613. https://doi.org/10.1182/blood-2014-12-570200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santaguida M, Schepers K, King B, Sabnis AJ, Forsberg EC, Attema JL, Braun BS, Passegue E (2009) JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15(4):341–352. https://doi.org/10.1016/j.ccr.2009.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Czechowicz A, Kraft D, Weissman IL, Bhattacharya D (2007) Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318(5854):1296–1299. https://doi.org/10.1126/science.1149726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y, Fujimura Y, Tsuji T, Ikehara S, Sonoda Y (2003) SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood 101(8):2924–2931. https://doi.org/10.1182/blood-2002-09-2782

    Article  CAS  PubMed  Google Scholar 

  20. Mazurier F, Doedens M, Gan OI, Dick JE (2003) Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 9(7):959–963. https://doi.org/10.1038/nm886

    Article  CAS  PubMed  Google Scholar 

  21. Gao J, Li Y, Lu S, Wang M, Yang Z, Yan X, Zheng Y (2009) Enhanced in vivo motility of human umbilical cord blood hematopoietic stem/progenitor cells introduced via intra-bone marrow injection into xenotransplanted NOD/SCID mouse. Exp Hematol 37(8):990–997. https://doi.org/10.1016/j.exphem.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  22. Kushida T, Inaba M, Hisha H, Ichioka N, Esumi T, Ogawa R, Iida H, Ikehara S (2001) Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood 97(10):3292–3299. https://doi.org/10.1182/blood.v97.10.3292

    Article  CAS  PubMed  Google Scholar 

  23. Li Q, Hisha H, Yasumizu R, Fan TX, Yang GX, Li Q, Cui YZ, Wang XL, Song CY, Okazaki S, Mizokami T, Cui WH, Guo K, Li M, Feng W, Katou J, Ikehara S (2007) Analyses of very early hemopoietic regeneration after bone marrow transplantation: comparison of intravenous and intrabone marrow routes. Stem Cells 25(5):1186–1194. https://doi.org/10.1634/stemcells.2006-0354

    Article  CAS  PubMed  Google Scholar 

  24. van Os R, Ausema A, Dontje B, van Riezen M, van Dam G, de Haan G (2010) Engraftment of syngeneic bone marrow is not more efficient after intrafemoral transplantation than after traditional intravenous administration. Exp Hematol 38(11):1115–1123. https://doi.org/10.1016/j.exphem.2010.07.003

    Article  PubMed  Google Scholar 

  25. Morton DBAD, Barclay R, Close BS, Ewbank R, Gask D, Heath M, Mattic S, Poole T, Seamer JSJ, Thompson A, Trussell B, West C, Jennings M (1993) Removal of blood from laboratory mammals and birds. First report of the BVA/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Lab Anim 27(1):1–22. https://doi.org/10.1258/002367793781082412

    Article  Google Scholar 

  26. Golde WT, Gollobin P, Rodriguez LL (2005) A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim 34(9):39–43. https://doi.org/10.1038/laban1005-39

    Article  Google Scholar 

  27. Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K, Lee SJ, Brinkman R, Eaves C (2007) Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1(2):218–229. https://doi.org/10.1016/j.stem.2007.05.015

    Article  CAS  PubMed  Google Scholar 

  28. Harrison DE, Jordan CT, Zhong RK, Astle CM (1993) Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol 21(2):206–219

    CAS  PubMed  Google Scholar 

  29. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lio P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129. https://doi.org/10.1016/j.cell.2008.10.048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Roxann Hétu-Arbour and Sarah Bouali contributed equally to this work. Research in the lab was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery grant RGPIN-2018-05258), Canadian Institutes of Health Research (CIHR operating grant PJT-148614), and the Canada Foundation for Innovation (CFI Leaders Fund grant 31377). KMH is a Fonds de recherche du Québec – Santé (FRQS) Research Scholar. SB is supported by a CIHR Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista M. Heinonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hétu-Arbour, R., Bouali, S., Heinonen, K.M. (2021). Experimental Competitive Bone Marrow Transplant Assays. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics