Skip to main content

Characterizing the In Vivo Role of Candidate Leukemia Stem Cell Genes

  • Protocol
  • First Online:
Leukemia Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2185))

  • 1815 Accesses

Abstract

Acute myeloid leukemia (AML) is a disease caused by multiple distinct genomic events in the hematopoietic stem cell and progenitor compartment. To gain insight into the link between genetic mutations in AML and their clinical significance, AML mouse models are often employed. However, the breeding of genetically modified mouse models is a resource-intensive and time-consuming endeavor. Here, we describe a viral-based protocol to study the role of candidate leukemia stem cell (LSC) genes. Transplantation of virally transduced oncogenic drivers for AML with virally altered expression of candidate leukemia associated genes in murine primary bone marrow cells, is an effective alternative method to assess the impact of cooperating mutations in AML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shlush LI, Zandi S, Mitchell A et al (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737. https://doi.org/10.1038/nm0797-730

    Article  CAS  Google Scholar 

  3. Eppert K, Takenaka K, Lechman ER et al (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17:1086

    Article  CAS  PubMed  Google Scholar 

  4. Ng SWK, Mitchell A, Kennedy JA et al (2016) A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540:433–437. https://doi.org/10.1038/nature20598

    Article  CAS  PubMed  Google Scholar 

  5. Costello RT, Mallet F, Gaugler B et al (2000) Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60:4403–4411

    CAS  PubMed  Google Scholar 

  6. Ishikawa F, Yoshida S, Saito Y et al (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25:1315–1321. https://doi.org/10.1038/nbt1350

    Article  CAS  PubMed  Google Scholar 

  7. Boyd AL, Aslostovar L, Reid J et al (2018) Identification of chemotherapy-induced leukemic-regenerating cells reveals a transient vulnerability of human AML recurrence. Cancer Cell 34:483–498.e5. https://doi.org/10.1016/j.ccell.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  8. Gregory TK, Wald D, Chen Y et al (2009) Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol 2:23. https://doi.org/10.1186/1756-8722-2-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ley TJ, Miller C, Ding L et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059–2074. https://doi.org/10.1056/NEJMoa1301689

    Article  CAS  PubMed  Google Scholar 

  10. White BS, DiPersio JF (2014) Genomic tools in acute myeloid leukemia: from the bench to the bedside. Cancer 120:1134–1144. https://doi.org/10.1002/cncr.28552

    Article  PubMed  PubMed Central  Google Scholar 

  11. Welch JS, Ley TJ, Link DC et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150:264–278. https://doi.org/10.1016/j.cell.2012.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woiterski J, Ebinger M, Witte KE et al (2013) Engraftment of low numbers of pediatric acute lymphoid and myeloid leukemias into NOD/SCID/IL2Rcgammanull mice reflects individual leukemogenecity and highly correlates with clinical outcome. Int J Cancer 133:1547–1556. https://doi.org/10.1002/ijc.28170

    Article  CAS  Google Scholar 

  13. Pabst C, Bergeron A, Lavallee V-P et al (2016) GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 127:2018–2027. https://doi.org/10.1182/blood-2015-11-683649

    Article  CAS  PubMed  Google Scholar 

  14. Cabezas-Wallscheid N, Eichwald V, de Graaf J et al (2013) Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mouse model. EMBO Mol Med 5:1804–1820. https://doi.org/10.1002/emmm.201302661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lehnertz B, Zhang YW, Boivin I et al (2017) H3(K27M/I) mutations promote context-dependent transformation in acute myeloid leukemia with RUNX1 alterations. Blood 130:2204–2214. https://doi.org/10.1182/blood-2017-03-774653

    Article  CAS  PubMed  Google Scholar 

  16. Whitt MA (2010) Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods 169:365–374. https://doi.org/10.1016/j.jviromet.2010.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang YW, Cabezas-Wallscheid N (2019) Assessment of young and aged hematopoietic stem cell activity by competitive serial transplantation assays. Methods Mol Biol 2017:193–203. https://doi.org/10.1007/978-1-4939-9574-5_15

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Cabezas-Wallscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Y.W., Mess, J., Cabezas-Wallscheid, N. (2021). Characterizing the In Vivo Role of Candidate Leukemia Stem Cell Genes. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics