Skip to main content

Introduction and Classification of Leukemias

  • Protocol
  • First Online:
Leukemia Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2185))

Abstract

Classifying the hematological malignancies by assigning cells to their normal counterpart and describing the nature of disease progression are entirely reliant on an accurate picture for the development of the multifarious types of blood and immune cells. In recent years, our understanding of the complex relationships between the various hematopoietic stem cell-derived cell lineages has undergone substantial revision. There has been similar progress in how we describe the nature of the “target” cells that genetic insults transform to give rise to the hematological malignancies. Here I describe how both longstanding and new information has influenced classifying, for diagnosis, the hematological malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuppers R, Schwering I, Braininger A et al (2002) Biology of Hodgkin’s lymphoma, Ann Oncol. 13(Suppl 1):11

    Google Scholar 

  2. Brown G, Hogg N, Greaves MF (1975) A candidate leukemia-specific antigen. Nature 258:454–456

    Article  CAS  PubMed  Google Scholar 

  3. Brown G, Capellaro D, Greaves MF (1975) Leukemia-associated antigens in man. JNCI 55:1281–1289

    Article  CAS  PubMed  Google Scholar 

  4. Greaves MF, Brown G, Haywood A (1976) A panel of markers for human lymphocyte subpopulations. Applications to disease. In: Beers RF Jnr, Basset E (eds) The role of immunological factors in infectious, allergic and autoimmune processes. Raven Press, New York

    Google Scholar 

  5. Brown G, Greaves MF, Lister TA, Rapson N et al (1974) The expression of human T and B lymphocyte cell surface markers on leukemia cells. Lancet 7883:753–755

    Article  Google Scholar 

  6. Greaves MF, Brown G, Capellaro D et al (1976) Immunological approaches to the identification of leukaemic cells. In: Wybran J, Staquet MJ (eds) Clinical tumour immunology. Pergamon, Oxford

    Google Scholar 

  7. Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    Article  CAS  PubMed  Google Scholar 

  8. Graf T (2008) Blood lines redrawn. Nature 452:702–703

    Article  CAS  PubMed  Google Scholar 

  9. Brown G, Hughes P, Michell R et al (2008) Ordered commitment of hematopoietic stem cells to lineage fates. In: Burnsides WB, Ellsley RH (eds) Stem cell applications in disease and health. Nova Science Publishers, Inc., New York

    Google Scholar 

  10. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672

    Article  CAS  PubMed  Google Scholar 

  11. Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197

    Article  CAS  PubMed  Google Scholar 

  12. Greaves M, Delia D, Robinson J et al (1981) Exploitation of monoclonal antibodies. A “who’s who” of haemopoietic malignanccy. Blood Cells 7:257–280

    CAS  PubMed  Google Scholar 

  13. Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukemia stem cell initiated by MLL-AF9. Nature 442:257–268

    Article  CAS  Google Scholar 

  14. Somervaille TC, Cleary ML (2006) Identification and characterisation of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10:257–268

    Article  CAS  PubMed  Google Scholar 

  15. Fialkow PJ, Jaconson RJ, Papayannopoulou T (1997) Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, eryrthrocyte, platelet and monocyte/macrophage. Am J Med 63:125–130

    Article  Google Scholar 

  16. Bennett JM, Catovsky D, Daniel MT (1976) Proposals for the classification of the acute leukemias. French-American-British (FAB) co-operative group. Br J Haematol 33:451–458

    Article  CAS  PubMed  Google Scholar 

  17. Lenz G, Wright GW, Emre NC et al (2008) Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105:13520–13525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ross ME, Zhou X, Song G et al (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102:2951–2959

    Article  CAS  PubMed  Google Scholar 

  19. Yeoh EJ, Ross ME, Shurtkweff SA et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143

    Article  CAS  PubMed  Google Scholar 

  20. Kern W, Kohlmann A, Schnittger S et al (2004) Gene expression profiling as a diagnostic tool in acute myeloid leukemia. Am J Pharmacogenomics 4:225–237

    Article  CAS  PubMed  Google Scholar 

  21. Kohlmann A, Schoch C, Schnittger S et al (2004) Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients. Leukemia 18:63–71

    Article  CAS  PubMed  Google Scholar 

  22. Downing JR, Wilson RK, Zhang J et al (2012) The pediatric cancer genome project. Nat Genet 44:619–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morin RD, Mungall K, Pleasance E et al (2013) Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 122:1256–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ceredig R, Rolink AG, Brown G (2009) Models of haematopoiesis: seeing the wood for the trees. Nat Rev Immunol 9:293–300

    Article  CAS  PubMed  Google Scholar 

  25. Velten L, Haas SF, Raffel S et al (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nestorowa S, Hamey FK, Pijuan Sala B et al (2006) A single-cell resolution map of mouse haematopoietic stem and progenitor cell differentiation. Blood 128:e20–e31

    Article  CAS  Google Scholar 

  27. Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:378–381

    Article  CAS  PubMed  Google Scholar 

  28. Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808

    Article  CAS  PubMed  Google Scholar 

  29. Metcalf D (1993) Haematopoietic regulators: redundancy or subtlety? Blood 82:3515–3523

    Article  CAS  PubMed  Google Scholar 

  30. Hume DA, MacDonald KP (2012) Therapeutic applications of macrophage colony-stimulating factor (CSF-1) and antagonists of CSF-1 recptor (CSF-1R) signaling. Blood 119:1810–1820

    Article  CAS  PubMed  Google Scholar 

  31. Gasson JC (1991) Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77:1131–1145

    Article  CAS  PubMed  Google Scholar 

  32. Shinjo K, Takeshita A, Higuchi M et al (1997) Erythropoietin receptor expression on human bone marrow erythroid precursor cells by a newly-devised quantitative flow-cytometric assay. Brit J Haematol 96:551–558

    Article  CAS  Google Scholar 

  33. Mooney CJ, Cunningham A, Tsapogas P et al (2017) Selective expression of flt3 within the mouse haematopoietic stem cell compartment. Int J Mol Sci 18:E1037

    Article  CAS  PubMed  Google Scholar 

  34. Schuettpelz LG, Borgerding JN, Christopher MJ et al (2014) G-CSF regulates haematopoietic stem cell activity, in part, through activation of toll-like receptor signalling. Leukemia 28:1851–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kondo M, Scherer DC, Miyamoto T et al (2000) Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407:383–386

    Article  CAS  PubMed  Google Scholar 

  36. Mossadegh-Keller N, Sarrazin S, Kandalla PK et al (2013) M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497:239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ninos JM, Jefferies LC, Cogle CR et al (2006) The thrombopoietin receptor, cMpl, is a selective marker for human haematopoietic stem cells. J Transl Med 4:9

    Article  PubMed  PubMed Central  Google Scholar 

  38. Notta F, Zandi S, Takayama N et al (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351:aab2116

    Article  CAS  PubMed  Google Scholar 

  39. Balciunaite G, Ceredig R, Massa S et al (2005) A b220+ cd117+ cd19- haematopoietic progenitor with potent lymphoid and myeloid developmental potential. Eur J Immunol 35:2019–2030

    Article  CAS  PubMed  Google Scholar 

  40. Alberti-Servera L, von Muenchow L, Tsapogas P et al (2017) Single-cell RNA sequencing reveals developmental heterogeneity among early lymphoid progenitors. EMBO J 36:3619–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grover A, Mancini E, Moore S et al (2014) Erythropoietin guides multipotent haematopoietic progenitor cells toward an erythroid fate. J Exp Med 211:181–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Metcalf D, Burgess AW (1982) Clonal analysis of progenitor cell commitment of granulocyte or macrophage production. J Cell Physiol 111:275–283

    Article  CAS  PubMed  Google Scholar 

  43. Rieger MA, Hoppe PS, Smejkal BM et al (2009) Haematopoietic cytokines can instruct lineage choice. Science 325:217–218

    Article  CAS  PubMed  Google Scholar 

  44. Tsapogas P, Swee LK, Nusser A et al (2014) In vivo evidence for an instructive role of fms-like tyrosine kinase-3 (flt3) ligand in haematopoietic development. Haematologica 99:638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balciunaite G, Ceredig R, Rolink AG (2005) The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage, and natural killer but no B-lymphocyte potential. Blood 105:1930–1936

    Article  CAS  PubMed  Google Scholar 

  46. Porritt HE, Rumfelt LL, Tabrizifard S et al (2004) Heterogeneity among dn1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20:735–745

    Article  CAS  PubMed  Google Scholar 

  47. Brown G, Tsapogas P, Ceredig R (2018) The changing face of haematopoiesis: a spectrum of options is available to stem cells. Immunol Cell Biol 96:898–911

    Article  PubMed  Google Scholar 

  48. Kikushige Y, Ishikawa F, Miyamoto T et al (2011) Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20:246–259

    Article  CAS  PubMed  Google Scholar 

  49. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organised as a hierarchy that originates from a primitive haematopoietic cell. Nat Med 197:461–463

    Google Scholar 

  50. Cobaleda C, Sanchez-Garcia I (2009) B-cell acute lymphoblastic leukemia: towards understanding its cellular origin. BioEssays 31:600–660

    Article  PubMed  Google Scholar 

  51. Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vicente-Duenas C, Perez-Caro M, Abollo-Jimenez F et al (2009) Stem-cell driven cancer: “hands-off” regulation of cancer development. Cell Cycle 8:1314–1318

    Article  CAS  PubMed  Google Scholar 

  53. Vicente-Dueñas C, Romero-Camarero I, Cobaleda C et al (2013) Function of oncogenes in cancer development: a changing paradigm. EMBO J 32:1502–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sachs L (1980) Constitutive uncoupling of pathways of gene expression that control growth and differentiation in myeloid leukemia: a model for the origin and progression of malignancy. Proc Natl Acad Sci U S A 77:6152–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brown G, Hughes PJ, Michell RH (2003) Cell differentiation and proliferation – simultaneous but independent? Exp Cell Res 291:282–288

    Article  CAS  PubMed  Google Scholar 

  56. Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13:795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma Y, Dobbins SE, Sherborne AL et al (2013) Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 110:7429–7433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Castellanos A, Pintado B, Weruaga E et al (1997) A BCR-ABL(p190) fusion gene made by homologousrecombination causes B-cell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr product. Blood 90:2168–2174

    Article  CAS  PubMed  Google Scholar 

  59. García-Ramírez I, Bhatia S, Rodríguez-Hernández G et al (2018) Lmo2 expression defines tumor cell identity during T-cell leukemogenesis. EMBO J 37:e98783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pérez-Caro M, Cobaleda C, González-Herrero I et al (2009) Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J 28:8–20

    Article  CAS  PubMed  Google Scholar 

  61. Greaves MF (1999) Molecular genetics, natural history and the demise of childhood leukemia. Eur J Cancer 35:173–185

    Article  CAS  PubMed  Google Scholar 

  62. Cox CV, Blair A (2005) A primitive cell origin for B-cell precursor ALL? Stem Cell Rev 1:189–196

    Article  CAS  PubMed  Google Scholar 

  63. Grimwade D, Enver T (2004) Acute promyelocytic leukemia: where does it stem from? Leukemia 18:375–384

    Article  CAS  PubMed  Google Scholar 

  64. Edwards RH, Wasik MA, Finan J et al (1999) Evidence for early haematopoietic progenitor cell involvement in acute promyelocytic leukemia. Am J Clin Pathol 112:819–827

    Article  CAS  PubMed  Google Scholar 

  65. Khan M, Siddiqui R, Naqvi K (2018) An update on classification, genetics, and clinical approach to mixed phenotype acute leukemia (MPAL). Ann Hematol 97:945–953

    Article  CAS  PubMed  Google Scholar 

  66. Kern W, Grossmann V, Roller A et al (2012) Mixed phenotype acute leukemia, T/myeloid, NOS(MPAL-TM) has a high DNMT3A mutation frequency and carries further genetic features of both AML and T-ALL: results of a comprehensive next-generation sequencing study analysing 32 genes. Blood 120:403

    Article  Google Scholar 

  67. Mulligan C (2012) Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest 122:3407–3416

    Article  CAS  Google Scholar 

  68. Muschen M, Lee S, Zhou G (2002) Molecular portraits of B cell lineage commitment. PNAS 99:10014–10019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yeoh E-J, Ross ME, Shurtleff SA (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143

    Article  CAS  PubMed  Google Scholar 

  70. Torrano V, Procter J, Cardus P et al (2011) ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood 118:4910–4918

    Article  CAS  PubMed  Google Scholar 

  71. de Lau WBM, Hurenkamp J, Berendes P et al (1998) The gene encoding the granulocyte colony-stimulating factor receptor is a target for deregulation in pre-B ALL by the t(1;19)-specific oncoprotein E2A-Pbx1. Oncogene 17:503–510

    Article  PubMed  Google Scholar 

  72. Brach MA, Henschler R, Mertelsmann RH et al (1991) Regulation of M-CSF expression by M-CSF: role of protein kinase C and transcription factor NF kappa B. Pathobiology 59:284–288

    Article  CAS  PubMed  Google Scholar 

  73. Zhang D-E, Hetherington CJ, Chen H-M et al (1994) The macrophage transcription factor PU.1 directs tissue specific expression of the macrophage colony-stimulating factor receptor. MCB 14:373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stanley ER, Chitu V (2014) CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 6:a021857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dahl R, Walsh JC, Lanki D et al (2003) Regulation of macrophage and neutrophil fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor. Nat Immunol 4:1029–1036

    Article  CAS  PubMed  Google Scholar 

  76. Smith LT, Hohaus S, Gonzalez DA et al (1996) PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promotor in myeloid cells. Blood 88:1234–1247

    Article  CAS  PubMed  Google Scholar 

  77. Hohaus S, Petrovick MS, Voso MT et al (1995) PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. MCB 15:5830–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mizuki M, Schwable J, Steur C et al (2003) Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 101:3164–3173

    Article  CAS  PubMed  Google Scholar 

  79. Volpe G, Clarke M, Garcìa P et al (2015) Regulation of the Flt3 Gene in haematopoietic stem and early progenitor cells. PLoS One 10:e0138257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lowenberg B, Touw IP (1993) Hematopoeitc growth factors and their receptors in acute leukemia. Blood 81:281–292

    Article  CAS  PubMed  Google Scholar 

  81. Mueller BU, Pabst T, Osato M et al (2002) Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100:998–1007

    Article  CAS  PubMed  Google Scholar 

  82. Rosenbauer F, Wagner K, Kutok JL et al (2004) Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36:624–630

    Article  CAS  PubMed  Google Scholar 

  83. Antony-Defre I, Paul A, Leite J et al (2017) Pharmacological inhibition of the transcription factor PU.1 in leukemia. J Clin Invest 127:4297–4313

    Article  Google Scholar 

  84. Pabst T, Mueller BU (2009) Complexity of CEBPA dysregulation in human acute myeloid leukemia. Clin Cancer Res 15:5303–5307

    Article  CAS  PubMed  Google Scholar 

  85. Hackanson B, Bennett KL, Brena RM et al (2008) Epigenetic modification of CCAAT/enhancer binding protein alpha expression in acute myeloid leukemia. Cancer Res 68:3142–3151

    Article  CAS  PubMed  Google Scholar 

  86. Lee S, Chen J, Zhou G et al (2006) Gene expression profiles in acute myeloid leukemia with common translocations using SAGE. Proc Natl Acad Sci U S A 103:1030–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu Y, Milazzo JP, Somerville TDD et al (2018) A TFIID-SAGA perturbation that targets MYB and suppresses acute myeloid leukemia. Cancer Cell 33:13–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Graham SM, Jorgensen HG, Allan E et al (2002) Primitive, quiescent Philadelphia positive stem cells from patients with chronic myeloid leukemia are insensitive to ST1571 in vitro. Blood 99:319–325

    Article  CAS  PubMed  Google Scholar 

  89. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  90. Riedell PA, Smith SM (2018) Should we use cell of origin and dual-protein expression in treating DLBCL. Clin Lymphoma Myeloma Leuk 18:91–97

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brown, G. (2021). Introduction and Classification of Leukemias. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics