Skip to main content

Genome-Wide Identification of Miniature Inverted-Repeat Transposable Elements by Targeted High-Throughput Sequencing

  • Protocol
  • First Online:
Plant Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2250))

Abstract

Miniature inverted-repeat transposable elements (MITEs) are a subset of short, non-autonomous class II transposable elements and also a major source of eukaryotic genomic variation. Therefore, genome-wide identification of MITE insertions can help to shed light on their copy number variation and genome insertion features. Here, we present a protocol for targeted MITE identification and genotyping by high-throughput sequencing. By introducing genome-wide detection of the rice mJing MITE as an example, we describe DNA extraction, DNA fragmentation, targeted DNA fragment enrichment, library construction for high-throughput sequencing, and sequence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bureau TE, Ronald PC, Wessler SR (1996) A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci U S A 93(16):8524–8529

    Article  CAS  Google Scholar 

  2. Jiang N, Bao Z, Zhang X et al (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  CAS  Google Scholar 

  3. Lu C, Chen J, Zhang Y et al (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29:1005–1017

    Article  CAS  Google Scholar 

  4. Hirsch CD, Springer NM (2017) Transposable element influences on gene expression in plants. Biochim Biophys Acta Gene Regul Mech 1860:157–165

    Article  CAS  Google Scholar 

  5. Stapley J, Santure AW, Dennis SR (2015) Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol 24:2241–2252

    Article  CAS  Google Scholar 

  6. Niu XM, Xu YC, Li ZW et al (2019) Transposable elements drive rapid phenotypic variation in Capsella rubella. Proc Natl Acad Sci U S A 116:6908–6913

    Article  CAS  Google Scholar 

  7. Mills RE, Luttig CT, Larkins CE et al (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16:1182–1190

    Article  CAS  Google Scholar 

  8. Kang H, Zhu D, Lin R et al (2016) A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads. DNA Res 23:241–251

    Article  CAS  Google Scholar 

  9. Tu Z (2001) Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 98:1699–1704

    Article  CAS  Google Scholar 

  10. Santiago N, Herráiz C, Goñi JR et al (2002) Genome-wide analysis of the emigrant family of MITE of Arabidopsis thaliana. Mol Biol Evol 19:2285–2293

    Article  CAS  Google Scholar 

  11. Han Y, Wessler SR (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 38:e199

    Article  Google Scholar 

  12. Yang G, Hall TC (2003) MAK, a computational tool kit for automated MITE analysis. Nucleic Acids Res 31:3659–3665

    Article  CAS  Google Scholar 

  13. Yang G (2013) MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements. BMC Bioinformatics 14:186

    Article  Google Scholar 

  14. Chen J, Hu Q, Zhang Y et al (2014) P-MITE: a database for plant minimature inverted-repeat transposable elements. Nucleic Acids Res 42:D1176–D1181

    Article  CAS  Google Scholar 

  15. Zhuang J, Wang J, Theurkauf W et al (2014) TEMP: a computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Res 42:6826–6838

    Article  CAS  Google Scholar 

  16. Williams-Carrier R, Stiffler N, Belcher S et al (2010) Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J 63:167–177

    CAS  PubMed  Google Scholar 

  17. Tang Y, Ma X, Zhao S et al (2019) Identification of an active miniature inverted-repeat transposable element mJing and its diversification in rice. Plant J 98:639–653

    Article  CAS  Google Scholar 

  18. Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  Google Scholar 

  19. Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  20. Ye K, Schulz MH, Long Q et al (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871

    Article  CAS  Google Scholar 

  21. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  22. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  23. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Chinese Universities Scientific Fund (Grant No. 2019TC087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubin Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tang, Y., Liu, F., Tan, L. (2021). Genome-Wide Identification of Miniature Inverted-Repeat Transposable Elements by Targeted High-Throughput Sequencing. In: Cho, J. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 2250. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1134-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1134-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1133-3

  • Online ISBN: 978-1-0716-1134-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics