Skip to main content

Gastruloids: Embryonic Organoids from Mouse Embryonic Stem Cells to Study Patterning and Development in Early Mammalian Embryos

  • Protocol
  • First Online:
Programmed Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2258))

Abstract

Gastruloids are embryonic organoids made from small, defined numbers of mouse embryonic stem cells (mESCs) aggregated in suspension culture, which over time form 3D structures that mimic many of the features of early mammalian development. Unlike embryoid bodies that are usually disorganized when grown over several days, gastruloids display distinct, well-organized gene expression domains demarcating the emergence of the three body axes, anteroposterior axial elongation, and implementation of collinear Hox transcriptional patterns over 5–7 days of culture. As such gastruloids represent a useful experimental system that is complementary to in vivo approaches in studying early developmental patterning mechanisms regulating the acquisition of cell fates. In this protocol, we describe the most recent method for generating gastruloids with high reproducibility, and provide a comprehensive list of possible challenges as well as steps for protocol optimization.

The former name of the author “Peter Baillie-Benson” was “Peter Baillie-Johnson”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  Google Scholar 

  2. Schröter C, Rué P, Mackenzie JP et al (2015) FGF/MAPK signaling sets the switching threshold of a bistable circuit controlling cell fate decisions in embryonic stem cells. Development 142:4205–4216

    Article  Google Scholar 

  3. Turner DA, Rué P, Mackenzie JP et al (2014) Brachyury cooperates with Wnt/β-Catenin signalling to elicit Primitive Streak like behaviour in differentiating mouse ES cells. BMC Biol 12:63

    Article  Google Scholar 

  4. Mulas C, Kalkan T, von Meyenn F et al (2019) Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development 146:dev178970-17

    Google Scholar 

  5. Turner DA, Trott J, Hayward P et al (2014) An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells. Biol Open 3:614–626

    Article  Google Scholar 

  6. Turner DA, Hayward PC, Baillie-Johnson P et al (2014) Wnt/β-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Development 141:4243–4253

    Article  CAS  Google Scholar 

  7. Kalmar T, Lim C, Hayward P et al (2009) Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol 7:e1000149

    Article  Google Scholar 

  8. Lowell S, Benchoua A, Heavey B et al (2006) Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 4:e121

    Article  Google Scholar 

  9. Turner DA, Baillie-Johnson P, Martinez Arias A (2016) Organoids and the genetically encoded self-assembly of embryonic stem cells. BioEssays 38:181–191

    Article  Google Scholar 

  10. ten Berge D, Koole W, Fuerer C et al (2008) Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3:508–518

    Article  CAS  Google Scholar 

  11. Marikawa Y, Tamashiro DAA, Fujita TC et al (2009) Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis (New York, NY) 47:93–106

    Article  CAS  Google Scholar 

  12. Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  Google Scholar 

  13. McCracken KW, Catá EM, Crawford CM et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–404

    Article  CAS  Google Scholar 

  14. Xia Y, Nivet E, Sancho-Martinez I et al (2013) Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 15:1507–1515

    Article  CAS  Google Scholar 

  15. Taguchi A, Kaku Y, Ohmori T et al (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67

    Article  CAS  Google Scholar 

  16. Lancaster MA, Renner M, Martin C-A et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  Google Scholar 

  17. Qian X, Nguyen HN, Song MM et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254

    Article  CAS  Google Scholar 

  18. Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  Google Scholar 

  19. Eiraku M, Sasai Y (2012) Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 7:69–79

    Article  CAS  Google Scholar 

  20. Meinhardt A, Eberle D, Tazaki A et al (2014) 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Rep 3:987–999

    Article  Google Scholar 

  21. Huch M, Koo B-K (2015) Modeling mouse and human development using organoid cultures. Development 142:3113–3125

    Article  CAS  Google Scholar 

  22. Simunovic M, Brivanlou AH (2017) Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144:976–985

    Article  CAS  Google Scholar 

  23. van den Brink SC, Baillie-Johnson P, Balayo T et al (2014) Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141:4231–4242

    Article  Google Scholar 

  24. Baillie-Johnson P, van den Brink SC, Balayo T et al (2015) Generation of aggregates of mouse embryonic stem cells that show symmetry breaking, polarization and emergent collective behaviour in vitro. J Vis Exp 105:53252

    Google Scholar 

  25. Turner DA, Girgin M, Alonso-Crisostomo L et al (2017) Anteroposterior polarity and elongation in the absence of extraembryonic tissues and spatially localised signalling in Gastruloids, mammalian embryonic organoids. Development 144:dev150391-3906

    Article  Google Scholar 

  26. Beccari L, Moris N, Girgin M et al (2018) Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562:272–276

    Article  CAS  Google Scholar 

  27. Girgin M, Turner DA, Baillie-Johnson P et al (2018) Generating gastruloids from mouse embryonic stem cells. Protoc Exchange:1–8. https://doi.org/10.1038/protex.2018.094

  28. Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset J-C, Korving J, Vivié J, Truckenmüller RK, van Oudenaarden A, van Blitterswijk CA, Geijsen N (2018) Blastocyst-like structures generated solely from stem cells. Nature 2018(557):106–111

    Article  Google Scholar 

  29. Rivron NC (2018) Formation of blastoids from mouse embryonic and trophoblast stem cells. Protoc Exchange. https://doi.org/10.1038/protex.2018.051

  30. Harrison SE, Sozen B, Christodoulou N et al (2017) Assembly of embryonic and extra-embryonic stem cells to mimic embryogenesis in vitro. Science 356:eaal1810

    Article  Google Scholar 

  31. Sozen B, Amadei G, Cox A et al (2018) Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat Cell Biol 20:979–989

    Article  CAS  Google Scholar 

  32. Ying Q-L, Smith AG (2003) Defined conditions for neural commitment and differentiation. Methods Enzymol 365:327–341

    Article  CAS  Google Scholar 

  33. Hooper M, Hardy K, Handyside A et al (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295

    Article  CAS  Google Scholar 

  34. Fehling HJ, Lacaud G, Kubo A et al (2003) Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130:4217–4227

    Article  CAS  Google Scholar 

  35. Papanayotou C, Benhaddou A, Camus A et al (2014) A novel nodal enhancer dependent on pluripotency factors and smad2/3 signaling conditions a regulatory switch during epiblast maturation. PLoS Biol 12:e1001890

    Article  Google Scholar 

  36. Freyer L, Schröter C, Saiz N et al (2015) A loss-of-function and H2B-venus transcriptional reporter allele for Gata6 in mice. BMC Dev Biol 15:38

    Article  Google Scholar 

  37. Deluz C, Friman ET, Strebinger D et al (2016) A role for mitotic bookmarking of SOX2 in pluripotency and differentiation. Genes Dev 30:2538–2550

    Article  CAS  Google Scholar 

  38. Serup P, Gustavsen C, Klein T et al (2012) Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice. Dis Model Mech 5:956–966

    Article  CAS  Google Scholar 

  39. Ying Q-L, Stavridis M, Griffiths D et al (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186

    Article  CAS  Google Scholar 

  40. Baillie-Johnson P (2017) The generation of a candidate axial precursor in three dimensional aggregates of mouse embryonic stem cells

    Google Scholar 

  41. EP3404092A1- Method and apparatus for centrifugation-based accumulation and collection of cell cultures

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank members of Alfonso Martinez Arias’ lab, University of Cambridge, UK, for discussions. Additionally, for kindly sharing their cell lines, we are indebted to Heiko Lickert (FoxA2H2BYFP), Gordon Keller (Bra+/GFP), Austin Smith (E14Tg2A, 46C Sox1GFP), Palle Serup (AR8mCherry), Jérôme Collignon (Nodal+/YFP), Anna-Katerina Hadjantonakis (GATA6H2BVenus), and David Suter (Sox1eGFP; BramCherry). We thank K. Hötte-Lohmeier, F. Pampaloni, and E.H.K. Stelzer from Goethe Universität Frankfurt am Main, Germany, for providing collectors and multi-collectors. KA, KA, and VT are funded by the European Molecular Biology Laboratory (EMBL) Barcelona; P B-B is funded as part of a Wellcome Strategic Award to Professor Jennifer Nichols and a European Research Council advanced grant to Professor Alfonso Martinez Arias (834580). The Cambridge Stem Cell Institute is supported by core funding from Wellcome and the Medical Research Council. DAT is funded by an NC3Rs David Sainsbury Research Fellowship (NC/P001467/1), a Wellcome Trust Institutional Strategic Support Fund (ISSF), and by an award from the University of Liverpool Technology Directorate Voucher Scheme. We acknowledge the Liverpool Centre for Cell Imaging (CCI) for provision of imaging equipment and technical assistance. Kerim Anlas and Peter Baillie-Benson contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David A. Turner or Vikas Trivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anlas, K., Baillie-Benson, P., Arató, K., Turner, D.A., Trivedi, V. (2021). Gastruloids: Embryonic Organoids from Mouse Embryonic Stem Cells to Study Patterning and Development in Early Mammalian Embryos. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics