Skip to main content

Imaging Mitochondrial Hydrogen Peroxide in Living Cells

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2275))

Abstract

Hydrogen peroxide (H2O2) produced from mitochondria is intimately involved in human health and disease, but is challenging to selectively monitor inside living systems. The fluorescent probe MitoPY1 provides a practical tool for imaging mitochondrial H2O2 and has been demonstrated to function in a variety of diverse cell types. In this chapter, we describe the synthetic preparation of the small molecule probe MitoPY1 , methods for validating this probe in vitro and in live cells, and an example procedure for measuring mitochondrial H2O2 in a cell culture model of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    Article  CAS  Google Scholar 

  2. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560

    Article  CAS  Google Scholar 

  3. Ernstner L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91:227s–255s

    Article  Google Scholar 

  4. Yang K, Kolanowski JL, New EJ (2017) Mitochondrially targeted fluorescent redox sensors. Interface Focus 7:20160105

    Article  Google Scholar 

  5. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim SD, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A 102:719–724

    Article  CAS  Google Scholar 

  6. Fato R, Bergamini C, Leoni S, Strocchi P, Lenaz G (2008) Generation of reactive oxygen species by mitochondrial complex I: implications in neurodegeneration. Neurochem Res 33:2487–2501

    Article  CAS  Google Scholar 

  7. Lenaz G, Bovina C, D’Aurelio M, Fato R, Formiggini G, Genova ML, Giuliano G, Pich MM, Paolucci U, Castelli GP, Ventura B (2002) Role of mitochondria in oxidative stress and aging. Ann N Y Acad Sci 959:199–213

    Article  CAS  Google Scholar 

  8. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    Article  CAS  Google Scholar 

  9. Kolanowski JL, Kaur A, New EJ (2016) Selective and reversible approaches towards imaging redox signaling using small molecule probes. Antiox Redox Signal 24:713–730

    Article  CAS  Google Scholar 

  10. New EJ (2016) Harnessing the potential of small molecule intracellular fluorescent sensors. ACS Sensors 1:328–333

    Article  CAS  Google Scholar 

  11. Lippert AR, Van de Bittner GV, Chang CJ (2011) Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc Chem Res 44:293–804

    Article  Google Scholar 

  12. Chang MCY, Pralle A, Isacoff EY, Chang CJ (2004) A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 126:15392–15393

    Article  CAS  Google Scholar 

  13. Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ (2005) Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 127:16652–16659

    Article  CAS  Google Scholar 

  14. Dickinson BC, Huynh C, Chang CJ (2010) A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc 132:5906–5915

    Article  CAS  Google Scholar 

  15. Murphy MP, Smith RAJ (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  CAS  Google Scholar 

  16. Ross MF, Kelso GF, Blaike FH, James AM, Cochemé HM, Filipovska A, Da Ros T, Hurd TR, Smith RAJ, Murphy MP (2005) Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem Mosc 70:222–230

    Article  CAS  Google Scholar 

  17. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  CAS  Google Scholar 

  18. Dickinson BC, Lin VS, Chang CJ (2013) Preparation and use of MitoPY1 for imaging hydrogen peroxide in live cells. Nat Protoc 8:1249–1259

    Article  Google Scholar 

  19. Pallichankandy S, Rahman A, Thayyullathil F, Galadari S (2015) ROS-dependent activation of autophagy is a critical mechanism for the induction of anti-glioma effect of sanguinarine. Free Radic Biol Med 89:708–720

    Article  CAS  Google Scholar 

  20. Lin L, Li D, Alesi GN, Fan J, Kang H-B, Lu Z, Boggon TJ, Jin P, Yi H, Wright ER, Duong D, Seyfried NT, Egnatchik R, DeBerardinis RJ, Magliocca KR, He C, Arellano ML, Khoury HJ, Shin DM, Khuri FR, Kang S (2015) Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 27:257–270

    Article  Google Scholar 

  21. Li B, Iglesias-Pedraz JM, Chen L-Y, Yin F, Cadenas E, Reddy S, Comai L (2014) Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell 13:367–378

    Article  CAS  Google Scholar 

  22. Cao Y, Qiu T, Kathayat RS, Azizi S-A, Thorne AK, Ahn D, Fukata Y, Fukata M, Rice PA, Dickinson BC (2019) ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5. Nat Chem Biol 15:1232–1240

    Article  CAS  Google Scholar 

  23. Zlatic SA, Vrailas-Mortimer A, Gokhale A, Carey LJ, Scott E, Burch R, McCall MM, Rudin-Rush S, Bowen Davis J, Hartwig C, Wener E, Li L, Petris M, Faundez V (2018) Rare disease mechanisms identified by genealogical proteomics of copper homeostasis mutant pedigrees. Cell Systems 6:368–380

    Article  CAS  Google Scholar 

  24. Sidlauskaite E, Gibson JW, Megson IL, Whitfield PD, Tovmasyan A, Batinic-Haberle I, Murphy MP, Moult PR, Cobley JN (2018) Mitochondrial ROS cause motor deficits induced by synaptic inactivity: implications for synapse pruning. Redox Biol 16:344–351

    Article  CAS  Google Scholar 

  25. Rodella U, Scorzerto M, Duregotti E, Negro S, Dickinson BC, Chang CJ, Yuki N, Rigoni M, Montecucco C (2016) An animal model of Miller fisher syndrome: mitochondrial hydrogen peroxide is produced by the autoimmune attack of nerve terminals and activates Schwann cells. Neurobiol Dis 96:95–104

    Article  CAS  Google Scholar 

  26. Zhang Y-P, Zhang Y, Xiao Z-B, Zhang Y-B, Zhang J, Li Z-Q, Zhu Y-B (2018) CFTR prevents neuronal apoptosis following cerebral ischemia reperfusion via regulating mitochondrial oxidative stress. J Mol Med 96:611–620

    Article  CAS  Google Scholar 

  27. Sanders LH, McCoy J, Hu X, Mastroberardino PG, Dickinson BC, Chang CJ, Chu CT, Van Houten B, Greenamyre JT (2014) Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol Dis 70:214–223

    Article  CAS  Google Scholar 

  28. Huang T-C, Chiu P-R, Chang W-T, Hsieh B-S, Huang Y-C, Cheng H-L, Huang L-W, Hu Y-C, Chang K-L (2018) Epirubicin induces apoptosis in osteoblasts through death-receptor and mitochondrial pathways. Apoptosis 23:226–236

    Article  CAS  Google Scholar 

  29. Gray JE, Starmer J, Lin VS, Dickinson BC, Magnuson T (2013) Hydrogen peroxide and defective cholesterol efflux prevent in vitro fertilization by cryopreserved inbred mouse sperm. Biol Reprod 89(17):1–12

    Google Scholar 

  30. Pisarenko O, Shulzhenko V, Studneva I, Pelogeykina Y, Timoshin A, Anesia R, Valet P, Parini A, Kunduzova O (2015) Structural apelin analogues: mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. Brit J Pharmacol 172:2933–2945

    Article  CAS  Google Scholar 

  31. Abuaita BH, Schultz TL, O’Riordan MX (2018) Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus. Cell Host Microbe 25:625–636

    Article  Google Scholar 

  32. Tkachev V, Goodell S, Opipari AW, Hao L-Y, Franchi L, Glick GD, Ferrara JLM, Byersdorfer CA (2015) Programmed Death-1 controls T cell survival by regulating oxidative metabolism. J Immunol 194:5789–5800

    Article  CAS  Google Scholar 

  33. Chabowski DS, Kadlec AO, Ait-Aissa K, Hockenberry JC, Pearson PJ, Beyer AM, Gutterman DD (2018) Lysophosphatidic acid acts on LPA1 receptor to increase H2O2 during flow-induced dilation in human adipose arterioles. Brit J Pharmacol 175:4266–4280

    Article  CAS  Google Scholar 

  34. Beyer AM, Zinkevich N, Miller B, Liu Y, Wittenburg AL, Mitchell M, Galdieri R, Sorokin A, Gutterman DD (2017) Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Res Cardiol 12:5

    Article  Google Scholar 

  35. Chang CJ, Nolan EM, Jaworski J, Okamoto KI, Hayashi Y, Sheng M, Lippard SJ (2004) ZP8, a neuronal zinc sensor with improved dynamic range; imaging zinc in hippocampal slices with two-photon microscopy. Inorg Chem 43:6774–6779

    Article  CAS  Google Scholar 

  36. Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS, Darley-Usmar V, Smith RAJ, Murphy MP (2002) Specific modification of mitochondrial protein thiols in response to oxidative stress. J Biol Chem 277:17048–17056

    Article  CAS  Google Scholar 

  37. Still WC, Kahn M, Mitra A (1978) Rapid chromatographic techniques for peparative separation with moderate resolution. J Org Chem 43:2923–2925

    Article  CAS  Google Scholar 

  38. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker green™ and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61A:162–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. New .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lippert, A.R., Dickinson, B.C., New, E.J. (2021). Imaging Mitochondrial Hydrogen Peroxide in Living Cells. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2275. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1262-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1262-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1261-3

  • Online ISBN: 978-1-0716-1262-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics