Skip to main content

Zygotic Embryogenesis in Flowering Plants

  • Protocol
  • First Online:
Doubled Haploid Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2288))

Abstract

In the context of plant regeneration, in vitro systems to produce embryos are frequently used. In many of these protocols, nonzygotic embryos are initiated that will produce shoot-like structures but may lack a primary root. By increasing the auxin-to-cytokinin ratio in the growth medium, roots are then regenerated in a second step. Therefore, in vitro systems might not or only partially execute a similar developmental program as employed during zygotic embryogenesis. There are, however, in vitro systems that can remarkably mimic zygotic embryogenesis such as Brassica microspore-derived embryos. In this case, the patterning process of these haploid embryos closely follows zygotic embryogenesis and all fundamental tissue types are generated in a rather similar manner. In this review, we discuss the most fundamental molecular events during early zygotic embryogenesis and hope that this brief summary can serve as a reference for studying and developing in vitro embryogenesis systems in the context of doubled haploid production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jurgens G (2003) Growing up green: cellular basis of plant development. Mech Dev 120(11):1395–1406. https://doi.org/10.1016/j.mod.2003.03.001

    Article  CAS  PubMed  Google Scholar 

  2. Wang B, Smith SM, Li J (2018) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468. https://doi.org/10.1146/annurev-arplant-042817-040422

    Article  CAS  PubMed  Google Scholar 

  3. Lau S, Slane D, Herud O, Kong JX, Jurgens G (2012) Early embryogenesis in flowering plants: setting up the basic body pattern. Annu Rev Plant Biol 63:483–506

    Article  CAS  Google Scholar 

  4. ten Hove CA, Lu KJ, Weijers D (2015) Building a plant: cell fate specification in the early Arabidopsis embryo. Development 142(3):420–430. https://doi.org/10.1242/dev.111500

    Article  CAS  PubMed  Google Scholar 

  5. Mansfield SG, Briarty LG (1991) Early embryogenesis in Arabidopsis-thaliana. 2. The developing embryo. Can J Bot 69(3):461–476

    Article  Google Scholar 

  6. Ueda M, Zhang Z, Laux T (2011) Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development. Dev Cell 20(2):264–270. https://doi.org/10.1016/j.devcel.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  7. Maheshwari P (1950) An introduction to the embryology of the angiosperms. McGraw-Hill, New York

    Book  Google Scholar 

  8. Bayer M, Slane D, Jurgens G (2017) Early plant embryogenesis-dark ages or dark matter? Curr Opin Plant Biol 35:30–36. https://doi.org/10.1016/j.pbi.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  9. Kimata Y, Higaki T, Kawashima T, Kurihara D, Sato Y, Yamada T, Hasezawa S, Berger F, Higashiyama T, Ueda M (2016) Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote. Proc Natl Acad Sci U S A 113(49):14157–14162. https://doi.org/10.1073/pnas.1613979113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms. Springer-Verlag, Berlin

    Book  Google Scholar 

  11. Bommert P, Werr W (2001) Gene expression patterns in the maize caryopsis: clues to decisions in embryo and endosperm development. Gene 271(2):131–142. https://doi.org/10.1016/s0378-1119(01)00503-0

    Article  CAS  PubMed  Google Scholar 

  12. Kimata Y, Kato T, Higaki T, Kurihara D, Yamada T, Segami S, Morita MT, Maeshima M, Hasezawa S, Higashiyama T, Tasaka M, Ueda M (2019) Polar vacuolar distribution is essential for accurate asymmetric division of Arabidopsis zygotes. Proc Natl Acad Sci U S A 116(6):2338–2343. https://doi.org/10.1073/pnas.1814160116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sivaramakrishna D (1978) Size relationships of apical cell and basal-cell in 2-celled embryos in angiosperms. Can J Bot 56(12):1434–1438. https://doi.org/10.1139/b78-166

    Article  Google Scholar 

  14. Wang K, Chen H, Miao Y, Bayer M (2019) Square one: zygote polarity and early embryogenesis in flowering plants. Curr Opin Plant Biol. https://doi.org/10.1016/j.pbi.2019.10.002

  15. Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116(1):109–119

    Article  CAS  Google Scholar 

  16. Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19(1):63–73. https://doi.org/10.1105/tpc.106.048298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang M, Wu H, Su J, Wang H, Zhu Q, Liu Y, Xu J, Lukowitz W, Zhang S (2017) Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. Plant J 92(6):1005–1019. https://doi.org/10.1111/tpj.13737

    Article  CAS  PubMed  Google Scholar 

  18. Neu A, Eilbert E, Asseck LY, Slane D, Henschen A, Wang K, Burgel P, Hildebrandt M, Musielak TJ, Kolb M, Lukowitz W, Grefen C, Bayer M (2019) Constitutive signaling activity of a receptor-associated protein links fertilization with embryonic patterning in Arabidopsis thaliana. Proc Natl Acad Sci U S A 116(12):5795–5804. https://doi.org/10.1073/pnas.1815866116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi H, Yan H, Li J, Tang D (2013) BSK1, a receptor-like cytoplasmic kinase, involved in both BR signaling and innate immunity in Arabidopsis. Plant Signal Behav 8(8). https://doi.org/10.4161/psb.24996

  20. Costa LM, Marshall E, Tesfaye M, Silverstein KA, Mori M, Umetsu Y, Otterbach SL, Papareddy R, Dickinson HG, Boutiller K, VandenBosch KA, Ohki S, Gutierrez-Marcos JF (2014) Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344(6180):168–172. https://doi.org/10.1126/science.1243005

    Article  CAS  PubMed  Google Scholar 

  21. Fiume E, Fletcher JC (2012) Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. Plant Cell 24(3):1000–1012. https://doi.org/10.1105/tpc.111.094839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Musielak TJ, Bayer M (2014) YODA signalling in the early Arabidopsis embryo. Biochem Soc Trans 42(2):408–412

    Article  CAS  Google Scholar 

  23. Liu SL, Adams KL (2010) Dramatic change in function and expression pattern of a gene duplicated by polyploidy created a paternal effect gene in the Brassicaceae. Mol Biol Evol 27(12):2817–2828. https://doi.org/10.1093/molbev/msq169

    Article  CAS  PubMed  Google Scholar 

  24. Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321(5888):557–560. https://doi.org/10.1126/science.1156973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W (2009) Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323(5920):1485–1488. https://doi.org/10.1126/science.1167784

    Article  CAS  PubMed  Google Scholar 

  26. Babu Y, Musielak T, Henschen A, Bayer M (2013) Suspensor length determines developmental progression of the embryo in Arabidopsis. Plant Physiol 162(3):1448–1458. https://doi.org/10.1104/pp.113.217166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ueda M, Aichinger E, Gong W, Groot E, Verstraeten I, Vu LD, De Smet I, Higashiyama T, Umeda M, Laux T (2017) Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote. Genes Dev 31(6):617–627. https://doi.org/10.1101/gad.292409.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131(3):657–668. https://doi.org/10.1242/dev.00963

    Article  CAS  PubMed  Google Scholar 

  29. Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T (2008) Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell 14(6):867–876. https://doi.org/10.1016/j.devcel.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  30. Jeong S, Palmer TM, Lukowitz W (2011) The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Curr Biol 21(15):1268–1276. https://doi.org/10.1016/j.cub.2011.06.049

    Article  CAS  PubMed  Google Scholar 

  31. Waki T, Hiki T, Watanabe R, Hashimoto T, Nakajima K (2011) The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr Biol 21(15):1277–1281. https://doi.org/10.1016/j.cub.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  32. Rovekamp M, Bowman JL, Grossniklaus U (2016) Marchantia MpRKD regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr Biol 26(13):1782–1789. https://doi.org/10.1016/j.cub.2016.05.028

    Article  CAS  PubMed  Google Scholar 

  33. Zhou X, Liu Z, Shen K, Zhao P, Sun MX (2020) Cell lineage-specific transcriptome analysis for interpreting cell fate specification of proembryos. Nat Commun 11(1):1366. https://doi.org/10.1038/s41467-020-15189-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426(6963):147–153. https://doi.org/10.1038/nature02085

    Article  CAS  PubMed  Google Scholar 

  35. Robert HS, Park C, Gutierrez CL, Wojcikowska B, Pencik A, Novak O, Chen J, Grunewald W, Dresselhaus T, Friml J, Laux T (2018) Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat Plants 4(8):548–553. https://doi.org/10.1038/s41477-018-0204-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshida S, Barbier de Reuille P, Lane B, Bassel GW, Prusinkiewicz P, Smith RS, Weijers D (2014) Genetic control of plant development by overriding a geometric division rule. Dev Cell 29(1):75–87. https://doi.org/10.1016/j.devcel.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  37. Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126(7):1387–1395

    Article  CAS  Google Scholar 

  38. Robert HS, Crhak Khaitova L, Mroue S, Benkova E (2015) The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. J Exp Bot 66(16):5029–5042. https://doi.org/10.1093/jxb/erv256

    Article  CAS  PubMed  Google Scholar 

  39. Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso JM, Weijers D, Friml J (2013) Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol 23(24):2506–2512. https://doi.org/10.1016/j.cub.2013.09.039

    Article  CAS  PubMed  Google Scholar 

  40. Wabnik K, Robert HS, Smith RS, Friml J (2013) Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr Biol 23(24):2513–2518. https://doi.org/10.1016/j.cub.2013.10.038

    Article  CAS  PubMed  Google Scholar 

  41. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133(1):177–191. https://doi.org/10.1016/j.cell.2008.01.047

    Article  CAS  PubMed  Google Scholar 

  42. Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19(8):2430–2439. https://doi.org/10.1105/tpc.107.053009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brumos J, Alonso JM, Stepanova AN (2014) Genetic aspects of auxin biosynthesis and its regulation. Physiol Plant 151(1):3–12. https://doi.org/10.1111/ppl.12098

    Article  CAS  PubMed  Google Scholar 

  44. Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M, Kientz M, Freire Rios A, Borst JW, Lukowitz W, Jurgens G, Weijers D (2012) Different auxin response machineries control distinct cell fates in the early plant embryo. Dev Cell 22(1):211–222. https://doi.org/10.1016/j.devcel.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Li X, Zhao J, Tang X, Tian S, Chen J, Shi C, Wang W, Zhang L, Feng X, Sun MX (2015) Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. Proc Natl Acad Sci U S A 112(40):12432–12437. https://doi.org/10.1073/pnas.1508651112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Radoeva T, Albrecht C, Piepers M, de Vries S, Weijers D (2020) Suspensor-derived somatic embryogenesis in Arabidopsis. Development 147(13). https://doi.org/10.1242/dev.188912

  47. Lau S, De Smet I, Kolb M, Meinhardt H, Jurgens G (2011) Auxin triggers a genetic switch. Nat Cell Biol 13(5):611–615. https://doi.org/10.1038/ncb2212

    Article  CAS  PubMed  Google Scholar 

  48. Jha P, Ochatt SJ, Kumar V (2020) WUSCHEL: a master regulator in plant growth signaling. Plant Cell Rep 39(4):431–444. https://doi.org/10.1007/s00299-020-02511-5

    Article  CAS  PubMed  Google Scholar 

  49. Wu X, Chory J, Weigel D (2007) Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Dev Biol 309(2):306–316. https://doi.org/10.1016/j.ydbio.2007.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nawy T, Bayer M, Mravec J, Friml J, Birnbaum KD, Lukowitz W (2010) The GATA factor HANABA TARANU is required to position the proembryo boundary in the early Arabidopsis embryo. Dev Cell 19(1):103–113. https://doi.org/10.1016/j.devcel.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  51. Jurgens G, Mayer U, Busch M, Lukowitz W, Laux T (1995) Pattern formation in the Arabidopsis embryo: a genetic perspective. Philos Trans R Soc Lond Ser B Biol Sci 350(1331):19–25. https://doi.org/10.1098/rstb.1995.0132

    Article  CAS  Google Scholar 

  52. Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16(13):1610–1615. https://doi.org/10.1101/gad.229402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takada S, Iida H (2014) Specification of epidermal cell fate in plant shoots. Front Plant Sci 5:49. https://doi.org/10.3389/fpls.2014.00049

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nodine MD, Yadegari R, Tax FE (2007) RPK1 and TOAD2 are two receptor-like kinases redundantly required for arabidopsis embryonic pattern formation. Dev Cell 12(6):943–956. https://doi.org/10.1016/j.devcel.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  55. Javelle M, Vernoud V, Rogowsky PM, Ingram GC (2011) Epidermis: the formation and functions of a fundamental plant tissue. New Phytol 189(1):17–39. https://doi.org/10.1111/j.1469-8137.2010.03514.x

    Article  CAS  PubMed  Google Scholar 

  56. Abe M, Katsumata H, Komeda Y, Takahashi T (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130(4):635–643. https://doi.org/10.1242/dev.00292

    Article  CAS  PubMed  Google Scholar 

  57. Abe M, Takahashi T, Komeda Y (2001) Identification of a cis-regulatory element for L1 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein. Plant J 26(5):487–494. https://doi.org/10.1046/j.1365-313x.2001.01047.x

    Article  CAS  PubMed  Google Scholar 

  58. Peterson KM, Shyu C, Burr CA, Horst RJ, Kanaoka MM, Omae M, Sato Y, Torii KU (2013) Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis. Development 140(9):1924–1935. https://doi.org/10.1242/dev.090209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takada S, Takada N, Yoshida A (2013) ATML1 promotes epidermal cell differentiation in Arabidopsis shoots. Development 140(9):1919–1923. https://doi.org/10.1242/dev.094417

    Article  CAS  PubMed  Google Scholar 

  60. Ogawa E, Yamada Y, Sezaki N, Kosaka S, Kondo H, Kamata N, Abe M, Komeda Y, Takahashi T (2015) ATML1 and PDF2 play a redundant and essential role in arabidopsis embryo development. Plant Cell Physiol 56(6):1183–1192. https://doi.org/10.1093/pcp/pcv045

    Article  CAS  PubMed  Google Scholar 

  61. Takada S, Jurgens G (2007) Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development 134(6):1141–1150. https://doi.org/10.1242/dev.02803

    Article  CAS  PubMed  Google Scholar 

  62. Iida H, Yoshida A, Takada S (2019) ATML1 activity is restricted to the outermost cells of the embryo through post-transcriptional repressions. Development 146(4). https://doi.org/10.1242/dev.169300

  63. Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24(23):2678–2692. https://doi.org/10.1101/gad.1986710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Palovaara J, de Zeeuw T, Weijers D (2016) Tissue and organ initiation in the plant embryo: a first time for everything. Annu Rev Cell Dev Biol 32:47–75. https://doi.org/10.1146/annurev-cellbio-111315-124929

    Article  CAS  PubMed  Google Scholar 

  65. Ruonala R, Ko D, Helariutta Y (2017) Genetic Networks in Plant Vascular Development. Annual Review of Genetics, 51(51):335–359. https://doi.org/10.1146/annurev-genet-120116-024525

  66. Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17(5):1405–1411. https://doi.org/10.1093/emboj/17.5.1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. De Rybel B, Moller B, Yoshida S, Grabowicz I, Barbier de Reuille P, Boeren S, Smith RS, Borst JW, Weijers D (2013) A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev Cell 24(4):426–437. https://doi.org/10.1016/j.devcel.2012.12.013

    Article  CAS  PubMed  Google Scholar 

  68. De Rybel B, Mahonen AP, Helariutta Y, Weijers D (2016) Plant vascular development: from early specification to differentiation. Nat Rev Mol Cell Biol 17(1):30–40. https://doi.org/10.1038/nrm.2015.6

    Article  CAS  PubMed  Google Scholar 

  69. Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jurgens G, Weijers D (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464(7290):913–916. https://doi.org/10.1038/nature08836

    Article  CAS  PubMed  Google Scholar 

  70. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119(1):71–84

    Article  CAS  Google Scholar 

  71. Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446(7137):811–814. https://doi.org/10.1038/nature05703

    Article  CAS  PubMed  Google Scholar 

  72. Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, Dewitte W, Murray JA (2014) WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr Biol 24(16):1939–1944. https://doi.org/10.1016/j.cub.2014.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Crawford BC, Sewell J, Golembeski G, Roshan C, Long JA, Yanofsky MF (2015) Plant development. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347(6222):655–659. https://doi.org/10.1126/science.aaa0196

    Article  CAS  PubMed  Google Scholar 

  74. Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D (2015) Reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12(3):207–210. https://doi.org/10.1038/nmeth.3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119(1):109–120. https://doi.org/10.1016/j.cell.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  76. Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449(7165):1053–1057. https://doi.org/10.1038/nature06206

    Article  CAS  PubMed  Google Scholar 

  77. Smith ZR, Long JA (2010) Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature 464(7287):423–426. https://doi.org/10.1038/nature08843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mahonen AP, Ten Tusscher K, Siligato R, Smetana O, Diaz-Trivino S, Salojarvi J, Wachsman G, Prasad K, Heidstra R, Scheres B (2014) PLETHORA gradient formation mechanism separates auxin responses. Nature 515(7525):125–129. https://doi.org/10.1038/nature13663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miller LR, Murashige T (1976) Tissue culture propagation of tropical foliage plants. In Vitro 12(12):797–813. https://doi.org/10.1007/BF02796365

    Article  CAS  PubMed  Google Scholar 

  80. Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122(1):87–96

    Article  CAS  Google Scholar 

  81. Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805–815. https://doi.org/10.1016/s0092-8674(00)81703-1

    Article  CAS  PubMed  Google Scholar 

  82. Yadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25(19):2025–2030. https://doi.org/10.1101/gad.17258511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289(5479):617–619. https://doi.org/10.1126/science.289.5479.617

    Article  CAS  PubMed  Google Scholar 

  84. Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100(6):635–644. https://doi.org/10.1016/s0092-8674(00)80700-x

    Article  CAS  PubMed  Google Scholar 

  85. Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89(4):575–585. https://doi.org/10.1016/s0092-8674(00)80239-1

    Article  CAS  PubMed  Google Scholar 

  86. Perales M, Rodriguez K, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV (2016) Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci U S A 113(41):E6298–E6306. https://doi.org/10.1073/pnas.1607669113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM (2012) Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 109(10):4002–4007. https://doi.org/10.1073/pnas.1200636109

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106(38):16529–16534. https://doi.org/10.1073/pnas.0908122106

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kitagawa M, Jackson D (2019) Control of meristem size. Annu Rev Plant Biol 70:269–291. https://doi.org/10.1146/annurev-arplant-042817-040549

    Article  CAS  PubMed  Google Scholar 

  90. Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24(2):125–132. https://doi.org/10.1016/j.devcel.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Z, Tucker E, Hermann M, Laux T (2017) A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell 40(3):264–277.e264. https://doi.org/10.1016/j.devcel.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  92. McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411(6838):709–713. https://doi.org/10.1038/35079635

    Article  CAS  PubMed  Google Scholar 

  93. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13(20):1768–1774. https://doi.org/10.1016/j.cub.2003.09.035

    Article  CAS  PubMed  Google Scholar 

  94. Dello Ioio R, Galinha C, Fletcher AG, Grigg SP, Molnar A, Willemsen V, Scheres B, Sabatini S, Baulcombe D, Maini PK, Tsiantis M (2012) A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis. Curr Biol 22(18):1699–1704. https://doi.org/10.1016/j.cub.2012.07.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Gerd Jürgens for comments on the manuscript and apologize to our colleagues whose work we have not included in the chapter due to our focus on Brassicaceae embryogenesis. Research in our group is supported by the German Science Foundation (Deutsche Forschungsgemeinschaft—DFG: SFB1101/B01 to M.B.), the Chinese Scholarship Council (Fellowship No. 201806320131 to Y.M.), and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, H., Miao, Y., Wang, K., Bayer, M. (2021). Zygotic Embryogenesis in Flowering Plants. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2288. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1335-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1335-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1334-4

  • Online ISBN: 978-1-0716-1335-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics