Skip to main content

Rhythmic Leaf and Cotyledon Movement Analysis

  • Protocol
  • First Online:
Environmental Responses in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2494))

  • 1191 Accesses

Abstract

The first descriptions of circadian rhythms were of the rhythmic leaf movements of plants. Rhythmic leaf movements offer a sensitive, noninvasive, nondestructive, and non-transgenic assay of plant circadian rhythms that can be readily automated, greatly facilitating genetic studies. Rhythmic leaf movement is particularly useful for the assessment of standing variation in clock function and can be readily applied to a diverse array of dicotyledonous plants, including both wild species and domesticated crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations DoEaSA, Population Division (2019) World population prospects 2019: highlights

    Google Scholar 

  2. Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  3. Tilman D, Balzer C, Hill J et al (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  CAS  Google Scholar 

  4. Ray DK, Mueller ND, West PC et al (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428

    Article  CAS  Google Scholar 

  5. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  Google Scholar 

  6. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  CAS  Google Scholar 

  7. Greenham K, McClung CR (2015) Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16:598–610

    Article  CAS  Google Scholar 

  8. Bendix C, Marshall CM, Harmon FG (2015) Circadian clock genes universally control key agricultural traits. Mol Plant 8:1135–1152

    Article  CAS  Google Scholar 

  9. Müller NA, Wijnen C, Srinivasan A et al (2016) Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet 48:89–93

    Article  Google Scholar 

  10. Müller NA, Zhang L, Koornneef M et al (2018) Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. Proc Natl Acad Sci U S A 115:7135–7140

    Article  Google Scholar 

  11. Li M-W, Lam H-M (2020) The modification of circadian clock components in soybean during domestication and improvement. Front Genet 11:571188

    Article  Google Scholar 

  12. McClung CR (2021) Circadian clock components offer targets for crop domestication and improvement. Genes 12:374

    Article  CAS  Google Scholar 

  13. Prusty MR, Bdolach E, Yamamoto E et al (2021) Genetic loci mediating circadian clock output plasticity and crop productivity under barley domestication. New Phytol 230:1787–1801

    Article  CAS  Google Scholar 

  14. Lin X, Liu B, Weller JL et al (2021) Molecular mechanisms for the photoperiodic regulation of flowering in soybean. J Integr Plant Biol. in press

    Google Scholar 

  15. Millar AJ, Short SR, Chua N-H et al (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rubin MJ, Brock MT, Davis SJ et al (2019) QTL underlying circadian clock parameters under seasonally variable field settings in Arabidopsis thaliana. G3: Genes|Genomes|Genetics 9:1131–1139

    Article  CAS  Google Scholar 

  17. Greenham K, Lou P, Remsen SE et al (2015) TRiP: Tracking Rhythms in Plants, an automated leaf movement analysis program for circadian period estimation. Plant Methods 11:33

    Article  Google Scholar 

  18. Bretzl H (1903) Botanische Forschungen des Alexanderzuges. B.G. Teubner, Leipzig

    Google Scholar 

  19. de Mairan J (1729) Observation botanique. Hist Acad Roy Sci:35–36

    Google Scholar 

  20. de Candolle AP (1832) Physiologie Végétale. Bechet Jeune, Paris

    Google Scholar 

  21. Kiesel A (1894) Untersuchungen zur Physiologie des facettierten Auges. Sitzungsber Akad Wiss Wien 103:97–139

    Google Scholar 

  22. Richter CP (1922) A behavioristic study of the activity of the rat. Comp Psychol Monogr 1:1–55

    Google Scholar 

  23. Bünning E (1960) Opening address: biological clocks. Cold Spring Harb Symp Quant Biol 25:1–9

    Article  Google Scholar 

  24. Cumming BG, Wagner E (1968) Rhythmic processes in plants. Annu Rev Plant Physiol 19:381–416

    Article  Google Scholar 

  25. McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803

    Article  CAS  Google Scholar 

  26. Engelmann W, Simon K, Phen CY (1992) Leaf movement rhythm in Arabidopsis thaliana. Z Naturforschung 47c:925–928

    Article  Google Scholar 

  27. Millar AJ, Carré IA, Strayer CA et al (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267:1161–1163

    Article  CAS  Google Scholar 

  28. Michael TP, Salomé PA, Yu HJ et al (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302:1049–1053

    Article  CAS  Google Scholar 

  29. Edwards KD, Lynn JR, Gyula P et al (2005) Natural allelic variation in the temperature compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics 170:387–400

    Article  CAS  Google Scholar 

  30. Greenham K, Lou P, Puzey JR et al (2017) Geographic variation of plant circadian clock function in natural and agricultural settings. J Biol Rhythm 32:26–34

    Article  Google Scholar 

  31. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  32. Rueden CT, Schindelin J, Hiner MC et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529

    Article  Google Scholar 

  33. Zielinski T, Moore AM, Troup E et al (2014) Strengths and limitations of period estimation methods for circadian data. PLoS One 9:e96462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Robertson McClung .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Supplemental File S1

Tray dimensions (STL 1702 kb)

Supplemental File S2

Stand dimensions (STL 13 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lou, P., Greenham, K., McClung, C.R. (2022). Rhythmic Leaf and Cotyledon Movement Analysis. In: Duque, P., Szakonyi, D. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 2494. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2297-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2297-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2296-4

  • Online ISBN: 978-1-0716-2297-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics