Skip to main content

Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope

  • Protocol
Super-Resolution Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1663))

Abstract

The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.

Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch für Mikrosk Anat 9:413–468. doi:10.1007/BF02956173

    Article  Google Scholar 

  2. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158. doi:10.1126/science.1137395

    Article  CAS  PubMed  Google Scholar 

  3. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795. doi:10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. doi:10.1126/science.1127344

    Article  CAS  PubMed  Google Scholar 

  5. Hell SW, Sahl SJ, Bates M et al (2015) The 2015 super-resolution microscopy roadmap. J Phys D Appl Phys 48:443001. doi:10.1088/0022-3727/48/44/443001

    Article  Google Scholar 

  6. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32. doi:10.1038/nmeth.1291

    Article  CAS  PubMed  Google Scholar 

  7. Eggeling C, Willig KI, Sahl SJ, Hell SW (2015) Lens-based fluorescence nanoscopy. Q Rev Biophys 48:178–243. doi:10.1017/S0033583514000146

    Article  CAS  PubMed  Google Scholar 

  8. Wildanger D, Rittweger E, Kastrup L, Hell SW (2008) STED microscopy with a supercontinuum laser source. Opt Express 16:9614–9621. doi:10.1364/OE.16.009614

    Article  PubMed  Google Scholar 

  9. Moneron G, Medda R, Hein B et al (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18:1302–1309. doi:10.1364/OE.18.001302

    Article  CAS  PubMed  Google Scholar 

  10. Lukinavičius G, Reymond L, D’Este E et al (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11:731–733. doi:10.1038/nmeth.2972

    Article  PubMed  Google Scholar 

  11. Sidenstein SC, D’Este E, Böhm MJ et al (2016) Multicolour multilevel STED nanoscopy of actin/Spectrin Organization at Synapses. Sci rep 6:26725. doi:10.1038/srep26725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kukat C, Wurm CA, Spahr H et al (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci 108:13534–13539. doi:10.1073/pnas.1109263108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Q, Wang Y, Chen D et al (2014) 2PE-STED microscopy with a single Ti: sapphire laser for reduced illumination. PLoS One 2(9):e88464. doi:10.1371/journal.pone.0088464

    Article  Google Scholar 

  14. Li D, Hérault K, Zylbersztejn K et al (2015) Astrocyte VAMP3 vesicles undergo Ca 2+ -independent cycling and modulate glutamate transporter trafficking. J Physiol 593:2807–2832. doi:10.1113/JP270362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reuss M, Engelhardt J, Hell SW (2010) Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. Opt Express 18:1049–1058. doi:10.1364/OE.18.001049

    Article  CAS  PubMed  Google Scholar 

  16. Gorlitz F, Hoyer P, Falk H et al (2014) A STED microscope designed for routine biomedical applications. Prog Electromagn Res 147:57–68. doi:10.2528/PIER14042708

    Article  Google Scholar 

  17. Westin L, Reuss M, Lindskog M et al (2014) Nanoscopic spine localization of Norbin, an mGluR5 accessory protein. BMC Neurosci 15:45. doi:10.1186/1471-2202-15-45

    Article  PubMed  PubMed Central  Google Scholar 

  18. Klauss A, König M, Hille C (2015) Upgrade of a scanning confocal microscope to a single-beam path STED microscope. PLoS One 10(6):e0130717. doi:10.1371/journal.pone.0130717

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bingen P, Reuss M, Engelhardt J, Hell SW (2011) Parallelized STED fluorescence nanoscopy. Opt Express 19:23716–23726. doi:10.1364/OE.19.023716

    Article  CAS  PubMed  Google Scholar 

  20. Auksorius E, Boruah BR, Dunsby C et al (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt Lett 33:113–115. doi:10.1364/OL.33.000113

    Article  PubMed  Google Scholar 

  21. Bückers J, Wildanger D, Vicidomini G et al (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19:3130–3143. doi:10.1364/OE.19.003130

    Article  PubMed  Google Scholar 

  22. Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–918. doi:10.1038/nmeth1108

    Article  CAS  PubMed  Google Scholar 

  23. Donnert G, Keller J, Medda R et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103:11440–11445. doi:10.1073/pnas.0604965103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Niehörster T, Löschberger A, Gregor I et al (2016) Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods 13:257–262. doi:10.1038/nmeth.3740

    Article  PubMed  Google Scholar 

  25. Bottanelli F, Kromann EB, Allgeyer ES et al (2016) Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 7:1–5. doi:10.1038/ncomms10778

    Article  Google Scholar 

  26. Vicidomini G, Moneron G, Han KY et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–573. doi:10.1038/nmeth.1624

    Article  CAS  PubMed  Google Scholar 

  27. Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of STED microscopy. Opt Express 19:4242–4254. doi:10.1364/OE.19.004242

    Article  PubMed  Google Scholar 

  28. Vicidomini G, Schönle A, Ta H et al (2013) STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS One 8(1):e54421. doi:10.1371/journal.pone.0054421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Galiani S, Harke B, Vicidomini G et al (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20:7362–7374. doi:10.1364/OE.20.007362

    Article  PubMed  Google Scholar 

  30. Vonesch C, Unser M (2008) A fast Thresholded Landweber algorithm for wavelet-regularized multidimensional Deconvolution. IEEE Trans Image Process 17:539–549. doi:10.1109/TIP.2008.917103

    Article  CAS  PubMed  Google Scholar 

  31. Ingaramo M, York AG, Hoogendoorn E et al (2014) Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths. ChemPhysChem 15:794–800. doi:10.1002/cphc.201300831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation (grant number 1850/30001355, www.dfg.de), and the Federal Ministry of Education and Research (“ALSComBi,” grant number 03IPT517Y, www.bmbf.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Klauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Klauss, A., Hille, C. (2017). Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope. In: Erfle, H. (eds) Super-Resolution Microscopy. Methods in Molecular Biology, vol 1663. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7265-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7265-4_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7264-7

  • Online ISBN: 978-1-4939-7265-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics