Skip to main content

Systems Microscopy Approaches in Unraveling and Predicting Drug-Induced Liver Injury (DILI)

  • Protocol
  • First Online:
Drug-Induced Liver Toxicity

Abstract

The occurrence of drug-induced liver injury (DILI) after drug approval has often led to withdrawal from the market. Especially idiosyncratic DILI forms a major problem for pharmaceutical companies. Due to its independency of dose or duration of exposure, idiosyncratic DILI is considered as unpredictable. New in vitro test systems are now evoking to improve the prediction of DILI in the preclinical phase of drug development. Most conventional compound toxicity screening systems rely on single end-point assays most of which are based on relatively late-stage toxicity markers. When monitoring key events upstream in various adaptive stress signaling pathways combined in a single assay, the sensitivity to pick up hepatotoxic drugs will be increased while also mechanistic insight will be gained. Integrating with high-content imaging (HCI), time and high resolution single cell dynamics can be captured together with features for translocation between specific subcellular compartments. Efforts have been made to use specific dyes, antibodies or nanosensors in a multiplexed fashion using HCI, to assess multiple toxicity markers. However, these markers are still relatively downstream of toxicity signaling pathways which do not pinpoint to the molecular initiation event (MIE) of a drug. Here, we describe the application of a HepG2 BAC GFP reporter platform for the assessment of DILI liabilities by monitoring key components of adaptive stress pathways combining with HCI. Detailed insight in the regulation of these adaptive stress pathways during drug adversity can be reached by integrating these reporters with RNAi screening. Ultimately, this may lead to the recognition of novel biomarkers which can be used in the development of novel toxicity testing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostapowicz G, Fontana RJ, Schiødt FV et al (2002) Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 137:947–954

    Article  PubMed  Google Scholar 

  2. Wilke R, Lin D, Roden D (2007) Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 6:904–916. https://doi.org/10.1038/nrd2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gu X, Manautou JE (2012) Molecular mechanisms underlying chemical liver injury. Expert Rev Mol Med 14:1–24. https://doi.org/10.1017/S1462399411002110

    Article  CAS  Google Scholar 

  4. Simmons SO, Fan C-Y, Ramabhadran R (2009) Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 111:202–225. https://doi.org/10.1093/toxsci/kfp140

    Article  CAS  PubMed  Google Scholar 

  5. Jennings P, Limonciel A, Felice L, Leonard MO (2013) An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 87:49–72. https://doi.org/10.1007/s00204-012-0919-y

    Article  CAS  PubMed  Google Scholar 

  6. Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312:158–165. https://doi.org/10.1016/j.tox.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  7. O’Brien PJ, Irwin W, Diaz D et al (2006) High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol 80:580–604. https://doi.org/10.1007/s00204-006-0091-3

    Article  CAS  PubMed  Google Scholar 

  8. Xu JJ, Henstock PV, Dunn MC et al (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105:97–105. https://doi.org/10.1093/toxsci/kfn109

    Article  CAS  PubMed  Google Scholar 

  9. Persson M, Løye AF, Mow T, Hornberg JJ (2013) A high content screening assay to predict human drug-induced liver injury during drug discovery. J Pharmacol Toxicol Methods 68:302–313. https://doi.org/10.1016/j.vascn.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Tolosa L, Pinto S, Donato MT et al (2012) Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs. Toxicol Sci 127:187–198. https://doi.org/10.1093/toxsci/kfs083

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Doshi U, Suzuki A et al (2016) Evaluation of multiple mechanism-based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: results from 152 marketed drugs with known liver injury profiles. Chem Biol Interact 255:3–11. https://doi.org/10.1016/j.cbi.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  12. Tolosa L, Carmona A, Castell JV et al (2015) High-content screening of drug-induced mitochondrial impairment in hepatic cells: effects of statins. Arch Toxicol 89:1847–1860. https://doi.org/10.1007/s00204-014-1334-3

    Article  CAS  PubMed  Google Scholar 

  13. Bauch C, Bevan S, Woodhouse H et al (2015) Predicting in vivo phospholipidosis-inducing potential of drugs by a combined high content screening and in silico modelling approach. Toxicol In Vitro 29:621–630. https://doi.org/10.1016/j.tiv.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  14. Germano D, Uteng M, Pognan F et al (2015) Determination of liver specific toxicities in rat hepatocytes by high content imaging during 2-week multiple treatment. Toxicol In Vitro 30:79–94. https://doi.org/10.1016/j.tiv.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  15. van de Water FM, Havinga J, Ravesloot WT et al (2011) High content screening analysis of phospholipidosis: validation of a 96-well assay with CHO-K1 and HepG2 cells for the prediction of in vivo based phospholipidosis. Toxicol In Vitro 25:1870–1882. https://doi.org/10.1016/j.tiv.2011.05.026

    Article  CAS  PubMed  Google Scholar 

  16. Lechner C, Reichel V, Moenning U et al (2010) Development of a fluorescence-based assay for drug interactions with human multidrug resistance related protein (MRP2; ABCC2) in MDCKII-MRP2 membrane vesicles. Eur J Pharm Biopharm 75:284–290. https://doi.org/10.1016/j.ejpb.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  17. De Bruyn T, Sempels W, Snoeys J et al (2014) Confocal imaging with a fluorescent bile acid analogue closely mimicking hepatic taurocholate disposition. J Pharm Sci 103:1872–1881. https://doi.org/10.1002/jps.23933

    Article  CAS  PubMed  Google Scholar 

  18. Perlman ZE, Slack MD, Feng Y et al (2004) Multidimensional drug profiling by automated microscopy. Science 306(5699):1194–1198. https://doi.org/10.1126/science.1100709

    Article  CAS  PubMed  Google Scholar 

  19. Shuhendler AJ, Pu K, Cui L et al (2014) Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol 32:373–380. https://doi.org/10.1038/nbt.2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poon KL, Wang X, Lee SGP et al (2017) Transgenic Zebrafish reporter lines as alternative in vivo organ toxicity models. Toxicol Sci 156:133–148. https://doi.org/10.1093/toxsci/kfw250

    Article  CAS  PubMed  Google Scholar 

  21. Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  23. Wink S, Hiemstra S, Huppelschoten S et al (2014) Quantitative high content imaging of cellular adaptive stress response pathways in toxicity for chemical safety assessment. Chem Res Toxicol 27:338–355. https://doi.org/10.1021/tx4004038

    Article  CAS  PubMed  Google Scholar 

  24. Banin S, Moyal L, Shieh S-Y et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677. https://doi.org/10.1126/science.281.5383.1674

    Article  CAS  PubMed  Google Scholar 

  25. Varfolomeev E, Vucic D (2016) Intracellular regulation of TNF activity in health and disease. Cytokine. https://doi.org/10.1016/j.cyto.2016.08.035

  26. Jaeschke H, McGill MR, Ramachandran A (2012) Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 44:88–106. https://doi.org/10.3109/03602532.2011.602688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Wu KC, Lu YF et al (2013) NRF2 protection against liver injury produced by various hepatotoxicants. Oxidative Med Cell Longev 2013:305861. https://doi.org/10.1155/2013/305861

    Article  CAS  Google Scholar 

  28. Enomoto A, Itoh K, Nagayoshi E et al (2001) High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 59:169–177

    Article  CAS  PubMed  Google Scholar 

  29. Qu Q, Liu J, Zhou HH, Klaassen CD (2014) Nrf2 protects against furosemide-induced hepatotoxicity. Toxicology 324:35–42. https://doi.org/10.1016/j.tox.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  30. Puthalakath H, O’Reilly LA, Gunn P et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349. https://doi.org/10.1016/j.cell.2007.04.027

    Article  CAS  PubMed  Google Scholar 

  31. Yamaguchi H, Wang HG (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279:45495–45502. https://doi.org/10.1074/jbc.M406933200

    Article  CAS  PubMed  Google Scholar 

  32. Hur KY, So J-S, Ruda V et al (2012) IRE1α activation protects mice against acetaminophen-induced hepatotoxicity. J Exp Med 209:307–318. https://doi.org/10.1084/jem.20111298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Uzi D, Barda L, Scaiewicz V et al (2013) CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. J Hepatol 59:495–503. https://doi.org/10.1016/j.jhep.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  34. Yu J, Zhang L (2003) No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4:248–249. https://doi.org/10.1016/S1535-6108(03)00249-6

    Article  CAS  PubMed  Google Scholar 

  35. Fredriksson L, Herpers B, Benedetti G et al (2011) Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis. Hepatology 53:2027–2041. https://doi.org/10.1002/hep.24314

    Article  CAS  PubMed  Google Scholar 

  36. Poser I, Sarov M, JR a H et al (2008) BAC TrangeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5:409–415. https://doi.org/10.1038/nmeth.1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wink S, Hiemstra S, Herpers B, van de Water B (2017) High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities. Arch Toxicol 91:1367–1383. https://doi.org/10.1007/s00204-016-1781-0

    Article  CAS  PubMed  Google Scholar 

  38. Igarashi Y, Nakatsu N, Yamashita T et al (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 43:D921–D927. https://doi.org/10.1093/nar/gku955

    Article  CAS  PubMed  Google Scholar 

  39. Suter L, Schroeder S, Meyer K et al (2011) EU framework 6 project: predictive toxicology (PredTox)-overview and outcome. Toxicol Appl Pharmacol 252:73–84. https://doi.org/10.1016/j.taap.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  40. Chen M, Vijay V, Shi Q et al (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16:697–703. https://doi.org/10.1016/j.drudis.2011.05.007

    Article  PubMed  Google Scholar 

  41. Jiang X, Wink S, van de Water B, Kopp-schneider A (2016) Functional analysis of high-content high-throughput imaging data. J Appl Stat 44:1903–1919. https://doi.org/10.1080/02664763.2016.1238048

    Article  Google Scholar 

  42. Herpers B, Wink S, Fredriksson L et al (2016) Activation of the Nrf2 response by intrinsic hepatotoxic drugs correlates with suppression of NF-κB activation and sensitizes toward TNFα-induced cytotoxicity. Arch Toxicol 90:1163–1179. https://doi.org/10.1007/s00204-015-1536-3

    Article  CAS  PubMed  Google Scholar 

  43. Fredriksson L, Wink S, Herpers B et al (2014) Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity. Toxicol Sci 140:144–159. https://doi.org/10.1093/toxsci/kfu072

    Article  CAS  PubMed  Google Scholar 

  44. Sutherland JJ, Jolly RA, Goldstein KM, Stevens JL (2016) Assessing concordance of drug-induced transcriptional response in rodent liver and cultured hepatocytes. PLoS Comput Biol 12:1–31. https://doi.org/10.1371/journal.pcbi.1004847

    Article  CAS  Google Scholar 

  45. Carreras Puigvert J, von Stechow L, Siddappa R et al (2013) Systems biology approach identifies the kinase csnk1a1 as a regulator of the DNA damage response in embryonic stem cells. Sci Signal 6:ra5. https://doi.org/10.1126/scisignal.2003208

    Article  CAS  PubMed  Google Scholar 

  46. LeCluyse EL, Witek RP, Andersen ME, Powers MJ (2012) Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 42:501–548. https://doi.org/10.3109/10408444.2012.682115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramaiahgari SC, den Braver MW, Herpers B et al (2014) A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol 88:1083–1095. https://doi.org/10.1007/s00204-014-1215-9

    Article  CAS  PubMed  Google Scholar 

  48. Hiemstra S, Wink S, van den Nieuwendijk K, Ramaiaghari S, Dankers A, de Bont H and van de Water B. A 3D HepG2 GFP reporter platform to screen for drug-induced liver injury liabilities. Manuscript in preparation

    Google Scholar 

  49. Hiemstra S, Niemeijer M, Koedoot E et al (2016) Comprehensive landscape of Nrf2 and p53 pathway activation dynamics by oxidative stress and DNA damage. Chem Res Toxicol 30:923–933. https://doi.org/10.1021/acs.chemrestox.6b00322

    Article  CAS  PubMed  Google Scholar 

  50. Jennen DGJ, Magkoufopoulou C, Ketelslegers HB et al (2010) Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci 115:66–79. https://doi.org/10.1093/toxsci/kfq026

    Article  CAS  PubMed  Google Scholar 

  51. Bader A (2003) Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos 31:1035–1042

    Article  PubMed  Google Scholar 

  52. Gómez-Lechón MJ, Tolosa L, Donato MT (2016) Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. J Appl Toxicol 36:752–768. https://doi.org/10.1002/jat.3277

    Article  CAS  PubMed  Google Scholar 

  53. Amacher DE (2012) The primary role of hepatic metabolism in idiosyncratic drug-induced liver injury. Expert Opin Drug Metab Toxicol 8:335–347. https://doi.org/10.1517/17425255.2012.658041

    Article  CAS  PubMed  Google Scholar 

  54. Leung L, Kalgutkar AS, Obach RS (2012) Metabolic activation in drug-induced liver injury. Drug Metab Rev 44:18–33. https://doi.org/10.3109/03602532.2011.605791

    Article  CAS  PubMed  Google Scholar 

  55. Jinek M, East A, Cheng A et al (2013) RNA-programmed genome editing in human cells. elife 2:e00471. https://doi.org/10.7554/eLife.00471

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gómez-Lechón MJ, Tolosa L (2016) Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Arch Toxicol 90:2049–2061. https://doi.org/10.1007/s00204-016-1756-1

    Article  CAS  PubMed  Google Scholar 

  58. Gao X, Liu Y (2017) A transcriptomic study suggesting human iPSC-derived hepatocytes potentially offer a better in vitro model of hepatotoxicity than most hepatoma cell lines. Cell Biol Toxicol 33:407–421. https://doi.org/10.1007/s10565-017-9383-z

    Article  CAS  PubMed  Google Scholar 

  59. Asplund A, Pradip A, van Giezen M et al (2016) One standardized differentiation procedure robustly generates homogenous hepatocyte cultures displaying metabolic diversity from a large panel of human pluripotent stem cells. Stem Cell Rev Rep 12:90–104. https://doi.org/10.1007/s12015-015-9621-9

    Article  CAS  PubMed  Google Scholar 

  60. Raju R, Chau D, Cho DS et al (2017) Cell expansion during directed differentiation of stem cells toward the hepatic lineage. Stem Cells Dev 26:274–284. https://doi.org/10.1089/scd.2016.0119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen Y-F, Tseng C-Y, Wang H-W et al (2012) Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology 55:1193–1203. https://doi.org/10.1002/hep.24790

    Article  CAS  PubMed  Google Scholar 

  62. Ware BR, Berger DR, Khetani SR (2015) Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci 145:252–262. https://doi.org/10.1093/toxsci/kfv048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the FP7 DETECTIVE project (grant agreement 266838), IMI MIP-DILI project (grant agreement 115336), and the H2020 EU-ToxRisk project (grant agreement 681002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob van de Water .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Niemeijer, M., Hiemstra, S., Wink, S., den Hollander, W., ter Braak, B., van de Water, B. (2018). Systems Microscopy Approaches in Unraveling and Predicting Drug-Induced Liver Injury (DILI). In: Chen, M., Will, Y. (eds) Drug-Induced Liver Toxicity. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7677-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7677-5_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7676-8

  • Online ISBN: 978-1-4939-7677-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics