Skip to main content

CRISPR/Cas9-Assisted Genome Editing in Murine Embryonic Stem Cells

  • Protocol
  • First Online:
Mouse Models of Innate Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1960))

Abstract

The study of gene function in normal human physiology and pathophysiology is complicated by countless factors such as genetic diversity (~98 million SNPs identified in the human genome as of June 2015), environmental exposure, epigenetic imprinting, maternal/in utero exposure, diet, exercise, age, sex, socioeconomic factors, and many other variables. Inbred mouse lines have allowed researchers to control for many of the variables that define human diversity but complicate the study of the human genome, gene/protein function, cellular and molecular pathways, and countless other genetic diseases. Furthermore, genetically modified mouse models enable us to generate and study mice whose genomes differ by as little as a single point mutation while controlling for non-genomic variables. This allows researchers to elucidate the quintessential function of a gene, which will further not only our scientific understanding, but provide key insight into human health and disease. Recent advances in CRISPR/Cas9 genome editing have revolutionized scientific protocols for introducing mutations into the mammalian genome. The ensuing chapter provides an overview of CRISPR/Cas9 genome editing in murine embryonic stem cells for the generation of genetically modified mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doetschman T, Gregg RG, Maeda N et al (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330(6148):576–578. https://doi.org/10.1038/330576a0

    Article  CAS  PubMed  Google Scholar 

  2. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512

    Article  CAS  PubMed  Google Scholar 

  3. Capecchi MR (2001) Generating mice with targeted mutations. Nat Med 7(10):1086–1090. https://doi.org/10.1038/nm1001-1086

    Article  CAS  PubMed  Google Scholar 

  4. Koller BH, Hagemann LJ, Doetschman T et al (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A 86(22):8927–8931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Snouwaert JN, Brigman KK, Latour AM et al (1992) An animal model for cystic fibrosis made by gene targeting. Science 257(5073):1083–1088

    Article  CAS  PubMed  Google Scholar 

  6. Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562. https://doi.org/10.1038/nature01262

    Article  CAS  Google Scholar 

  7. Ringwald M, Iyer V, Mason JC et al (2011) The IKMC web portal: a central point of entry to data and resources from the international knockout Mouse consortium. Nucleic Acids Res 39(Database issue):D849–D855. https://doi.org/10.1093/nar/gkq879

    Article  CAS  PubMed  Google Scholar 

  8. Lundberg KS, Shoemaker DD, Adams MW et al (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108(1):1–6

    Article  CAS  PubMed  Google Scholar 

  9. Tsyrulnyk A, Moriggl R (2008) A detailed protocol for bacterial artificial chromosome recombineering to study essential genes in stem cells. Methods Mol Biol 430:269–293. https://doi.org/10.1007/978-1-59745-182-6_19

    Article  CAS  PubMed  Google Scholar 

  10. Williams RL, Hilton DJ, Pease S et al (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336(6200):684–687. https://doi.org/10.1038/336684a0

    Article  CAS  PubMed  Google Scholar 

  11. Ying QL, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523. https://doi.org/10.1038/nature06968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Folger KR, Wong EA, Wahl G et al (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2(11):1372–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yagi T, Ikawa Y, Yoshida K et al (1990) Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci U S A 87(24):9918–9922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Connelly JP, Barker JC, Pruett-Miller S et al (2010) Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Ther 18(6):1103–1110. https://doi.org/10.1038/mt.2010.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. https://doi.org/10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zerbino DR, Achuthan P, Akanni W et al (2018) Ensembl 2018. Nucleic Acids Res 46(D1):D754–D761. https://doi.org/10.1093/nar/gkx1098

    Article  CAS  PubMed  Google Scholar 

  18. Casper J, Zweig AS, Villarreal C et al (2018) The UCSC genome browser database: 2018 update. Nucleic Acids Res 46(D1):D762–D769. https://doi.org/10.1093/nar/gkx1020

    Article  CAS  PubMed  Google Scholar 

  19. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hasty P, Rivera-Perez J, Bradley A (1991) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11(11):5586–5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu ZH, Books JT, Kaufman RM et al (2003) Long targeting arms do not increase the efficiency of homologous recombination in the beta-globin locus of murine embryonic stem cells. Blood 102(4):1531–1533. https://doi.org/10.1182/blood-2003-03-0708

    Article  CAS  PubMed  Google Scholar 

  23. Zimmermann AG, Sun Y (2013) Conventional murine gene targeting. Methods Mol Biol 1031:1–18. https://doi.org/10.1007/978-1-62703-481-4_1

    Article  CAS  PubMed  Google Scholar 

  24. van den Ent F, Lowe J (2006) RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods 67(1):67–74. https://doi.org/10.1016/j.jbbm.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  25. Scott GJGA, Hagler TB, Ray MK (2018) Trans–inner cell mass injection of embryonic stem cells leads to higher chimerism rates. J Vis Exp. https://doi.org/10.3791/56955

  26. Bin Ali R, van der Ahe F, Braumuller TM et al (2014) Improved pregnancy and birth rates with routine application of nonsurgical embryo transfer. Transgenic Res 23(4):691–695. https://doi.org/10.1007/s11248-014-9802-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng JM, Satoh K, Wang H et al (2011) Generation of viable male and female mice from two fathers. Biol Reprod 84(3):613–618. https://doi.org/10.1095/biolreprod.110.088831

    Article  CAS  PubMed  Google Scholar 

  28. Wilson S, Sheardown SA (2011) Identification of germline competent chimaeras by copulatory plug genotyping. Transgenic Res 20(2):429–433. https://doi.org/10.1007/s11248-010-9413-6

    Article  CAS  PubMed  Google Scholar 

  29. Moreno-Mateos MA, Vejnar CE, Beaudoin JD et al (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12(10):982–988. https://doi.org/10.1038/nmeth.3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191. https://doi.org/10.1038/nbt.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artiom Gruzdev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gruzdev, A., Scott, G.J., Hagler, T.B., Ray, M.K. (2019). CRISPR/Cas9-Assisted Genome Editing in Murine Embryonic Stem Cells. In: Allen, I. (eds) Mouse Models of Innate Immunity. Methods in Molecular Biology, vol 1960. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9167-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9167-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9166-2

  • Online ISBN: 978-1-4939-9167-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics