Skip to main content

Genetic Analysis of Caenorhabditis elegans Innate Immunity

  • Protocol
Innate Immunity

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 415))

Summary

Innate immunity is an ancient and conserved defense mechanism. The worm Caenorhabditis elegans provides a useful tool for studying the function of the innate immune system at the molecular and cellular levels within the context of a whole organism. The powerful genetics of the worm, combined with efficacy of gene knockdown by RNA interference (RNAi), offer complementary tools for analyzing the contribution of individual genes to innate immunity. It is important, however, to exclude pleiotropic effects that confound results. In this chapter, we will describe the procedures for performing both forward and reverse genetic screens and will discuss a number of techniques developed to resolve confounding effects, thus enhancing the power of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A. (1999) Phylogenetic perspectives in innate immunity. Science 284, 1313–8.

    Article  CAS  PubMed  Google Scholar 

  2. Janeway, C. A., Jr., and Medzhitov, R. (2002) Innate immune recognition. Annu Rev Immunol 20, 197–216.

    Article  CAS  PubMed  Google Scholar 

  3. Tan, M. W., Mahajan-Miklos, S., and Ausubel, F. M. (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96, 715–20.

    Article  CAS  PubMed  Google Scholar 

  4. Alegado, R. A., Campbell, M. C., Chen, W. C., Slutz, S. S., and Tan, M. W. (2003) Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model. Cell Microbiol 5, 435–44.

    Article  CAS  PubMed  Google Scholar 

  5. Tan, M. W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G., and Ausubel, F. M. (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96, 2408–13.

    Article  CAS  PubMed  Google Scholar 

  6. Kim, D. H., Feinbaum, R., Alloing, G., Emerson, F. E., Garsin, D. A., Inoue, H., Tanaka-Hino, M., Hisamoto, N., Matsumoto, K., Tan, M. W., and Ausubel, F. M. (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297, 623–6.

    Article  CAS  PubMed  Google Scholar 

  7. Timmons, L., and Fire, A. (1998) Specific interference by ingested dsRNA. Nature 395, 854.

    Article  CAS  PubMed  Google Scholar 

  8. Guo, S., and Kemphues, K. J. (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–20.

    Article  CAS  PubMed  Google Scholar 

  9. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–11.

    Article  CAS  PubMed  Google Scholar 

  10. Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen P., and Ahringer, J. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–7.

    Article  CAS  PubMed  Google Scholar 

  11. Grishok, A. (2005) RNAi mechanisms in Caenorhabditis elegans. FEBS Lett 579, 5932–9.

    Article  CAS  PubMed  Google Scholar 

  12. Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G., and Ausubel, F. M. (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–902.

    Article  CAS  PubMed  Google Scholar 

  13. Labrousse, A., Chauvet, S., Couillault, C., Kurz, C. L., and Ewbank, J. J. (2000) Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr Biol 10, 1543–5.

    Article  CAS  PubMed  Google Scholar 

  14. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

    CAS  PubMed  Google Scholar 

  15. Gems, D., and Riddle, D. L. (2000) Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154, 1597–610.

    CAS  PubMed  Google Scholar 

  16. Thomas, J. H. (1990) Genetic analysis of defecation in Caenorhabditis elegans. Genetics 124, 855–72.

    CAS  PubMed  Google Scholar 

  17. Liu, D. W., and Thomas, J. H. (1994) Regulation of a periodic motor program in C. elegans. J Neurosci 14, 1953–62.

    CAS  PubMed  Google Scholar 

  18. Iwasaki, K., Liu, D. W., and Thomas, J. H. (1995) Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans. Proc Natl Acad Sci USA 92, 10317–21.

    Article  CAS  PubMed  Google Scholar 

  19. Hodgkin, J. A., and Brenner, S. (1977) Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics 86, 275–87.

    CAS  PubMed  Google Scholar 

  20. Beanan, M. J., and Strome, S. (1992) Characterization of a germ-line proliferation mutation in C. elegans. Development 116, 755–66.

    CAS  PubMed  Google Scholar 

  21. Simmer, F., Tijsterman, M., Parrish, S., Koushika, S. P., Nonet, M. L., Fire, A., Ahringer, J., and Plasterk, R. H. (2002) Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12, 1317–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ashcroft, N. R., Srayko, M., Kosinski, M. E., Mains, P. E., and Golden, A. (1999) RNA-Mediated interference of a cdc25 homolog in Caenorhabditis elegans results in defects in the embryonic cortical membrane, meiosis, and mitosis. Dev Biol 206, 15–32.

    Article  CAS  PubMed  Google Scholar 

  23. Ashcroft, N., and Golden, A. (2002) CDC-25.1 regulates germline proliferation in Caenorhabditis elegans. Genesis 33, 1–7.

    Article  CAS  PubMed  Google Scholar 

  24. Varkey, J. P., Muhlrad, P. J., Minniti, A. N., Do, B., and Ward, S. (1995) The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Dev 9, 1074–86.

    Article  CAS  PubMed  Google Scholar 

  25. Reiner, D. J., and Thomas, J. H. (1995) Reversal of a muscle response to GABA during C. elegans male development. J Neurosci 15, 6094–102.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Shapira, M., Tan, MW. (2008). Genetic Analysis of Caenorhabditis elegans Innate Immunity. In: Ewbank, J., Vivier, E. (eds) Innate Immunity. Methods in Molecular Biology™, vol 415. Humana Press. https://doi.org/10.1007/978-1-59745-570-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-570-1_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-746-4

  • Online ISBN: 978-1-59745-570-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics