Skip to main content

Quassinoids: Chemistry and Novel Detection Techniques

  • Reference work entry
  • First Online:
Natural Products

Abstract

Natural products play a dominant role in pharmaceutical industry, providing resources for the discovery of new drug molecules. Quassinoids are degraded triterpenes reported from the members of the Simarouboidaea subfamily of Simaroubaceae. The importance of quassinoids as antiplasmodial, anticancer and anti-HIV compounds has revived interest in them as potential drug candidates. Its efficacy as combinatorial drug coupled with the structure–activity analysis has reclaimed novel structural leads for new drug development. Quassinoids are categorized into five distinct groups according to their basic skeleton, viz., C-18, C-19, C-20, C-22, and C-25. This present entry reviews the structure, structure–activity relationship, and methods of isolation, detection, and characterization of quassinoids. Recent LC–MS/MS-based techniques could effectively provide more lead molecules which would act in synergism with other compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ESI:

Electrospray ionization

GABA:

Gamma-aminobutyric acid

GC:

Gas chromatography

HIV:

Human immunodeficiency virus

HPLC:

High-performance liquid chromatography

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

QESAR:

Quantitative electronic structure–activity relationship

QSAR:

Quantitative structure–activity relationship

SAR:

Structure–activity relationship

References

  1. Verpoorte R (2000) Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol 52(3):253–262

    Article  CAS  Google Scholar 

  2. Phillipson JD, Wright CW, Kirby GC, Wrhurst DC (1995) Structure and biological activity of sesquiterpene and diterpene derivatives from medicinal plants. In: Hostettmann K, Marston A, Maillard M, Hamburger M (eds) Phytochemistry of the plants used in traditional medicine. Oxford University Press, London, pp 95–136

    Google Scholar 

  3. Lang’at-Thoruwa C, Kirby GC, Phillipson JD, Warhurst DC, Watt RA, Wright CW (2003) Enhancement of the antiplasmodial activity of quassin by transformation into a gamma-lactone. J Nat Prod 66:1486–1489

    Article  CAS  Google Scholar 

  4. Spencer CF, Koniuszy FR, Rogers EF, Shavel J, Easton NR, Kaczka EA, Kuehl FA, Phillips RF, Walti A, Folkers K, Malanga C, Seeler AO (1947) Survey of plants for antimicrobial activity. Lloydia 10:145–148

    Google Scholar 

  5. Khan SA, Shamsuddin KM (1980) Isolation and structure of 13,18-dehydroexcelsin, a quassinoid, and glaucarubol from Ailanthus excelsa. Phytochemistry 19:2484–2485

    Article  CAS  Google Scholar 

  6. Govindachari TR, Kumari GN, Gopalakrishnan G, Suresh G, Wesley SD, Sreelatha T (2001) Insect antifedant and growth regulating activities of quassinoids from Samadera indica. Fitoterapia 72:568–571

    Article  CAS  Google Scholar 

  7. Grieco PA, Vander-Roest JM, Pineiro-Nunez MM, Campaigne EE, Carmack M (1995) Polyandrol, a C19 quassinoid from Castela polyandra. Phytochemistry 38:1463–1465

    Article  CAS  Google Scholar 

  8. Grieco PA, Haddad J, Pineiro-Nunez MM, Huffman JC (1999) Quassinoids from the twigs and thorns of Castela polyandra. Phytochemistry 50:637–645

    Article  CAS  Google Scholar 

  9. Fleck TJ, Grieco PA (1992) Synthetic studies on quassinoids: total synthesis of (±)-glaucarubolone and (±)-holacanthone. Tetrahedron Lett 33:1813–1816

    Article  CAS  Google Scholar 

  10. Grieco PA, Collins JL, Moher ED, Fleck TJ, Gross RS (1993) Synthetic studies on quassinoids: Total synthesis of (-)-Chaparrinone, (-)-Glaucarubolone, and (+)-Glaucarubinone. J Am Chem Soc 115:6078–6093

    Article  CAS  Google Scholar 

  11. Dou J, McChesney JD, Sindelar RD, Goins DK, Walker LA (1996) A New Quassinoid from Castela texana. J Nat Prod 59:73–76

    Article  CAS  Google Scholar 

  12. Kubo I, Chaudhuri SK (1993) A quassinoid glucoside from the bark of Castela tortuosa. Phytochemistry 32:215–217

    Article  Google Scholar 

  13. Chaudhuri SK, Kubo I (1992) Two quassinoid glucosides from Castela tortuosa. Phytochemistry 31:3961–3964

    Article  CAS  Google Scholar 

  14. Itokawa H, Qin X-R, Morita H, Koichi T (1993) C18 and C19 Quassinoids from Eurycoma longifolia. J Nat Prod 56:1766–1771

    Article  CAS  Google Scholar 

  15. Morita H, Kishi E, Takeya K, Itokawa H, Iitaka Y (1993) Highly oxygenated quassinoids from Eurycoma longifolia. Phytochemistry 33:691–696

    Article  CAS  Google Scholar 

  16. Carter CAG, Tinto WF, Reynolds WF, McLean S (1993) Quassinoids from Quassia multiflora: Structural Assignments by 2D NMR Spectroscopy. J Nat Prod 56:130–133

    Article  CAS  Google Scholar 

  17. Itokawa H, Kishi E, Morita H, Takeya K (1992) Cytotoxic quassinoids and tirucallane-type triterpenes from the woods of Eurycoma longifolia. Chem Pharm Bull 40:1053–1055

    Article  CAS  Google Scholar 

  18. Itokawa H, Qin X-R, Morita H, Takeya K, IItaka Y (1993) Novel quassinoids from Eurycoma Longifolia. Chem Pharm Bull 41:403–405

    Article  CAS  Google Scholar 

  19. Morita H, Kishi E, Takeya K, Itokawa H, Tanaka O (1990) New quassinoids from roots of. Eurycoma longifolia. Chem Lett 5:749–752

    Article  Google Scholar 

  20. Takeya K, Ang HH, Hitotsuyanagi Y (2000) Eurycolactones A–C, novel quassinoids from Eurycoma longifolia. Tetrahedron Lett 41:6849–6853

    Article  Google Scholar 

  21. Takeya K, Ang HH, Hitotsuyanagi Y, Fukaya H (2002) Quassinoids from Eurycoma longifolia. Phytochemistry 59:833–837

    Article  Google Scholar 

  22. Jiwajinda S, Santisopasri V, Murakami A, Hirai N, Ohigashi H (2001) Quassinoids from Eurycoma longifolia as plant growth inhibitors. Phytochemistry 58:959–962

    Article  CAS  Google Scholar 

  23. Polonsky J, Baskevitch Z, Gottlefb HE, Hagamman EW, Wenkert E (1975) Carbon-13 Nuclear Magnetic Resonance Spectral Analysis of Quassinoid Bitter Principles. J Org Chem 40:2499–2504

    Article  CAS  Google Scholar 

  24. Tada H, Yasuda F, Otani K, Doteuchi M, Ishihara Y, ShiroM (1991) New antiulcer quassinoids from Eurycoma longifolia. Eur J Med Chem 26:345–349

    Article  CAS  Google Scholar 

  25. Low BS, Teh CH, Yuen KH, Chan KL (2011) Physico-chemical effects of the major quassinoids in a standardized Eurycoma longifolia extract (Fr 2) on the bioavailability and pharmacokinetic properties, and their implications for oral antimalarial activity. Nat Prod Commun 6:337–341

    CAS  Google Scholar 

  26. Yamasaki K, Kanchanapoom T, Kasai R, Chumsri P (2001) Quassinoids from Eurycoma harmandiana. Phytochemistry 57:1205–1208

    Article  Google Scholar 

  27. Kitagawa I, Mahmud T, Yokota KI, Nakagawa S, Mayumi T, Kobayashi M, Shibuya H (1996) Indonesian medicinal plants. XVII. Characterization of quassinoids from the stems of Quassia indica. Chem Pharm Bull 44:2009–2014

    Article  CAS  Google Scholar 

  28. Takeya K, Ozeki A, Hitotsuyanagi Y, Hashimoto E, Itokawa H, Alves SM (1998) Cytotoxic quassinoids from Simaba cedron. J Nat Prod. 61:776–780

    Article  Google Scholar 

  29. Takeya K, Hitotsuyanagi Y, Ozeki A, Itokawa H, Alves SM (2001) Cedronolactone E, a novel C19 Quassinoid from Simaba cedron J Nat Prod 64:1583–1584

    Article  CAS  Google Scholar 

  30. Aono H, Koike K, Kaneko J, Ohmoto T (1994) Alkaloids and quassinoids from Ailanthus malabarica. Phytochemistry 37:579–584

    Article  CAS  Google Scholar 

  31. Kubota K, Fukamiya N, Hamada T, Okano M, Tagahara K, Lee KH (1996) Two new quassinoids, ailantinols A and B, and related compounds from Ailanthus altissima. J Nat Prod 59:683–686

    Article  CAS  Google Scholar 

  32. Kamiuchi K, Mitsunaga K, Koike K, Ouyang Y, Ohmoto T, Nikaido T (1996) Quassinoids and limonoids from Harrisonia perforata. Heterocycles 43:653–664

    Article  CAS  Google Scholar 

  33. Matsuzaki T, Fukamiya N, Okano M, Fujita T (1991) Picrasinoside H, a new quassinoid glucoside, and related compounds from the stem wood of Picrasma ailanthoides. J Nat Prod 54:844–848

    Article  CAS  Google Scholar 

  34. Daido M, Fukamiya N, Okano M, Tagahara K (1995) Picrasinol D, a new quassinoid from the stem wood of Picrasma ailanthoides. J Nat Prod 58:605–608

    Article  CAS  Google Scholar 

  35. Daido M, Fukamiya N, Okano M, Tagahara K (1992) Picrasinol C a new quassinoid, and its related compounds from the stem wood of Picrasma ailanthoides. J Nat Prod 55:1643–1647

    Article  CAS  Google Scholar 

  36. Krebs HC, Schilling PJ, Wartchow R, Bolte M (2001) Quassinoids and other constituents from Picrasma crenata. Z fuer Naturforsch B: Chem Sci 56:315–318

    CAS  Google Scholar 

  37. Koike K, Yokoh M, Furukaw M, Ishil S, Ohmoto T (1995) Picrasane quassinoids from Picrasma javanica. Phytochemistry 40:233–238

    Article  CAS  Google Scholar 

  38. Koike K, Ohmoto T (1992) New quassinoid glucosides, Javanicinosides I, J, K, and L, from Picrasma javanica. J Nat Prod 55:482–486

    Article  CAS  Google Scholar 

  39. Yang S-P, Yue J-M (2004) Five new quassinoids from the bark of Picrasma quassioides. Helv Chim Acta 87:1591–1600

    Article  CAS  Google Scholar 

  40. Barbetti P, Grandolini G, Fardella G, Chiappini I (1993) Quassinoids from Quassia amara. Phytochemistry 32:1007–1013

    Article  CAS  Google Scholar 

  41. Cachet N, Hoakwie F, Houel E, Deharo D, Bourdy G, Jullian V (2012) Picrasin K, a new quassinoid from Quassia amara L. (Simaroubaceae). Phytochem Lett 5:162–164

    Article  CAS  Google Scholar 

  42. Francois G, Diakanamwa C, Timperman G, Bringmann G, Steenackers T, Atassi G, Looveren MV, Holenz J, Tassin JP, Assi LA, Vanhaelen-Fastre R, Vanhaelen M (1998) Antimalarial and cytotoxic potential of four quassinoids from Hannoa chlorantha and Hannoa klaineana, and their structure-activity relationships. Int J Parasitol 28:635–640

    Article  CAS  Google Scholar 

  43. Vieira IJ, Rodrigues-Filho E, Vieira PC, Silva M, Fernandes JB (1998) Quassinoids and protolimonoids from Simaba cedron.Fitoterapia 69:88–90

    CAS  Google Scholar 

  44. Itokawa H, Takeya K, Kobata H, Ozeki A, Morita H (1997) A new quassinoid from Ailanthus vilmoriniana J Nat Prod 60:642–644

    Google Scholar 

  45. Takeya K, Kobata H, Ozeki A, Morita H, Itokawa H (1998) Quassinoids from Ailanthus vilmoriniana. Phytochemistry 48:565–568

    Article  CAS  Google Scholar 

  46. Ghosh PC, Larrahondo JE, Quesne PW, Raffauf RF (1977) Antitumor plants. IV. Constituents of Simarouba versicolor. J Nat Prod 40:364–369

    CAS  Google Scholar 

  47. Grieco PA, Moher ED, Seya M, Huffman JC, Grieco HJ (1994) A quassinoid (peninsularinone) and a steroid from Castela peninsularis. Phytochemistry 37:1451–1454

    Article  Google Scholar 

  48. Cabral JA, McChesney JD, Milhous WK (1993) New antimalarial quassinoid from Simaba guianensis. J Nat Prod 56:1954–1961

    Article  CAS  Google Scholar 

  49. Imamura K, Fukamiya N, Okano M, Tagahara K, Lee KH (1993) Bruceanols D, E, and F. Three new cytotoxic quassinoids from Brucea antidysenterica. J Nat Prod 56:2091–2097.

    Google Scholar 

  50. Imamura K, Fukamiya N, Nakamura M, Okano M, Tagahara K, Lee KH (1995) Bruceanols G and H, cytotoxic quassinoids from Brucea antidysenterica. J Nat Prod 58:1915–1919

    Google Scholar 

  51. Fukamiya N, Lee KH, Muhammad I, Murakamia C, Okanoa M, Harveyd I, Pelletier J (2005) Structure-activity relationships of quassinoids for eukaryotic protein synthesis. Cancer Lett 220(1):37–48

    Article  CAS  Google Scholar 

  52. Ohnishi S, Fukamiya N, Okano MJ (1995) Bruceosides D, E, and F, three new cytotoxic quassinoid glucosides from Brucea javanica. J Nat Prod 58:1032–1038.

    Article  CAS  Google Scholar 

  53. Vieira IJC, Filho RB, Filho ER, Vieira PC, da Silva MF, Fernandes JB (1999). 20(R)- and 20(S)-Simarolide epimers isolated from Simaba cuneata: chemical shifts assignment of carbon and hydrogen atoms. J Braz Chem Soc 10: 76–84

    Article  CAS  Google Scholar 

  54. Njar VCO, Alao TO, Okogun JI, Raji Y, Bolarinwa AF, Nduka EU (1995) Antifertility activity of Quassia amara: quassin inhibits the steroidogenesis in rat Leydig cells in vitro. Planta Med 61:180–182

    Article  CAS  Google Scholar 

  55. Guo Z, Vangapandu S, Sindelar RW, Walker LA, Sindelar RD (2005) Biologically active quassinoids and their chemistry: potentianl leads for drug design. Curr Med Chem 12:173–190

    Article  CAS  Google Scholar 

  56. Muhammad I, Samoylenko V (2007) Antimalarial quassinoids: past, present and future. Expert Opin Drug Discov 2(8):1065–1084

    Article  CAS  Google Scholar 

  57. Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17:3229–3256

    Article  CAS  Google Scholar 

  58. Sen R, Chatterjee M (2011) Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine 18(12):1056–1069

    Article  CAS  Google Scholar 

  59. Reynertson KA, Charlsona ME, Gudasa LJ (2011) nduction of murine embryonic stem cell differentiation by medicinal plant extracts. Exp Cell Res 317:82–93

    Article  CAS  Google Scholar 

  60. Bhattacharjee S, Gupta G, Bhattacharya P, Mukherjee A, Bhattacharyya MS, Pal A, Majumdar S (2009) Quassin alters the immunological patterns of murine macrophages through generation of nitric oxide to exert antileishmanial activity. J Antimicrob Chemother 63:317–324

    Article  CAS  Google Scholar 

  61. Mishra K, Chakraborty D, Pal A, Dey N (2010) Plasmodium falciparum: In vitro interaction of quassin and neo-quassin with artesunate, a hemisuccinate derivative of artemisinin. Exp Parasitol 124:421–427

    Article  CAS  Google Scholar 

  62. Liu JH, Zhao N, Zhang GJ, Yu SS, Wu LJ, Qu J, Ma SG, Chen XG, Zhang TQ, Bai J, Chen H, Fang ZF, Zhao F, Tang WB (2012) Bioactive quassinoids from the seeds of Brucea javanica. J Nat Prod 75(4):683–688

    Article  CAS  Google Scholar 

  63. Cachet N, Hoakwie F, Bertani S, Bourdy G, Deharo E, Stien D, Houel E, Gornitzka H, Fillaux J, Chevalley S, Valentin A, Jullian V (2009) Antimalarial activity of Simalikalactone E, a new quassinoid from Quassia amara L. (Simaroubaceae). Antimicrob Agents Chemother 53:4393–4398

    Article  CAS  Google Scholar 

  64. Yan XH, Chen J, Di Y-T, Fang X, Dong J-H, Sang P, Wang Y-H, He H-P, Zhang Z-K, Hao X-J (2010) Anti-Tobacco Mosaic Virus (TMV) Quassinoids from Brucea javanica (L.) Merr. J Agric Food Chem 58:1572–1577

    Article  CAS  Google Scholar 

  65. Oshimi S, Takasaki A, Hirasawa Y, Hosoya T, Awang K, Hadi AHA, Ekasari W, Widyawaruyanti A, Morita H (2009) Delaumonones A and B, new antiplasmodial quassinoids from Laumoniera bruceadelpha. Chem Pharm Bull 57:867–869

    Article  CAS  Google Scholar 

  66. Deharo E, Ginsburg H (2011) Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts. Malar J 10(suppl 1):S5

    Article  CAS  Google Scholar 

  67. Liou YF, Hall IH, Okano M, Lee KH, Chaney SG (1982) Antitumor agents XLVIII: Structure – activity relationships of quassinoids as in vitro protein synthesis inhibitors of P-388 lymphocytic leukemia tumor cell metabolism. J Pharm Sci 71:430–435

    Article  CAS  Google Scholar 

  68. Considine RT, Willingham W, Chaney SG, Wyrick S, Hall IR, Lee KH (1983) Structure-activity relationships for binding and inactivation of rabbit reticulocyte ribosomes by quassinoid antineoplastic agents. Eur J Biochem 132:157–163

    Article  CAS  Google Scholar 

  69. Hall IH, Lee KH, Imakura Y, Okano M, Johnson A (1983) Anti-inflammatory agents III: Structure–activity relationships of brusatol and related quassinoids. J Pharm Sci 72:1282–1284

    Article  CAS  Google Scholar 

  70. Okano M, Fukamiya N, Tagahara K, Tokuda H, Iwashima A, Nishino H, Lee KH (1995) Inhibitory effects of quassinoids on Epstein-Barr virus activation. Cancer Lett 94:139–146

    Article  CAS  Google Scholar 

  71. Dayan FE, Watson SB, Galindo JCG, Hernández A, Dou J, McChesney JD, Duke SO (1999) Phytotoxicity of quassinoids: physiological responses and structural requirements. Pestic Biochem Physiol 65(1):15–24

    Article  CAS  Google Scholar 

  72. Bawm S, Matsuura H, Elkhateeb A, Nabeta K, Subeki, Oku NNY, Katakura K (2008) In vitro antitrypanosomal activities of quassinoid compounds from the fruits of a medicinal plant, Brucea javanica. Vet Parasitol 158:288–294

    Article  CAS  Google Scholar 

  73. Wani MC, Taylor HL, Thompson JB, Wall ME, McPhail AT, Onan KD (1979) Plant antitumour agents-XV: Isolation and x-ray crystal structure of a new antileukaemic quassinoid undulatone from Hannoa undulate. Tetrahedron 35:17–24

    Article  CAS  Google Scholar 

  74. Valeriote FA, Corbett TH, Grieco PA, Moher ED, Collins JL, Fleck TJ (1998) Anticancer activity of glaucarubinone analogues. Oncol Res 10:201–208

    CAS  Google Scholar 

  75. Ekong RM, Kirby GC, Patel GC, Phillipson JD, Warhurst DC (1990) Comparison of the in vitro activities of quassinoids with activity against Plasmodium falciparum, anisomycin and some other inhibitors of eukaryotic protein synthesis. Biochem Pharm 40:297–301

    Article  CAS  Google Scholar 

  76. Kirby GC, O’Neill MJ, Phillipson JD, Warhurst DC (1989) In vitro studies on the mode of action quassionoids with activity against chloroquine-resistant Plasmodium falciparum. Biochem Pharmacol 38:4367–4374

    Article  CAS  Google Scholar 

  77. Klocke JA, Arisawa M, Handa SS, Kinghorn AD, Cordell GA, Farnsworth NR (1985) Growth inhibitory, insecticidal and antifeedant effects of some antileukemic and cytotoxic quassinoids on two species of agricultural pests. Experientia 41:379–382

    Article  CAS  Google Scholar 

  78. Leskinen V, Polonsky J, Bhatnagar SJ (1984) Antifeedant activity of quassinoids. Chem Ecol 10:1497–1507

    Article  CAS  Google Scholar 

  79. Lidert Z, Wing K, Polonsky JJ, Imakura Y, Okano M, Tani S, Lin Y-M, Kiyokawa H, Lee K-H (1987) Insect antifeedant and growth inhibitory activity of forty-six quassinoids on two species of agricultural pests. J Nat Prod 50:442

    Article  CAS  Google Scholar 

  80. Ramírez-Galicia G, Martínez-Pacheco H, Garduño-Juárez R, Deeb O (2011) Exploring QSAR of antiamoebic agents of isolated natural products by MLR, ANN, and RTO. Med Chem Res 21:2501–2516

    Article  CAS  Google Scholar 

  81. van Dang G, Rode BM, Stuppner H (1994) Quantitative electronic structure-activity relationship (QESAR) of natural cytotoxic compounds: maytansinoids, quassinoids and cucurbitacins. Eur J Pharm Sci 2:331–350

    Article  Google Scholar 

  82. Itokawa H, Takeya K, Hitotsuyanagi Y, Morita H (2000) Anti tumor compounds isolated from higher plaints. In: Atta-ur-Rahman (eds) Studies in natural products chemistry, vol 24 (E). Elsevier, pp 269–350

    Google Scholar 

  83. Kuriyama T, Ju X-L, Fusazaki S, Hishinuma H, Satou T, Koike K, Nikaido T, Ozoe Y (2005) Nematocidal quassinoids and bicyclophosphorothionates: a possible common mode of action on the GABA receptor. Pestic Biochem Physiol 81:176–187

    Article  CAS  Google Scholar 

  84. Lee KH (2004) Current developments in the discovery and design of new drug candidates from plant natural product leads. J Nat Prod 67:273–283

    Article  CAS  Google Scholar 

  85. Kuo RY, Qian K, Morris-Natschke SL, Lee K-H (2009) Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Nat Prod Rep 26:1321–1344

    Article  CAS  Google Scholar 

  86. Mata-Greenwood E, Cuendet M, Sher D, Gustin D, Stock W, Pezzuto JM (2002) Brusatol-mediated induction of leukemic cell differentiation and G1 arrest is associated with down-regulation of c-myc. Leukemia 16:2275–2284

    Article  CAS  Google Scholar 

  87. Cuendet M, Pezzuto JM (2004) Antitumor activity of bruceantin: an old drug with new promise. Nat Prod 67:269–272

    Article  CAS  Google Scholar 

  88. Fernand VE (2003) PhD thesis, Louisiana State University and Agricultural and Mechanical College

    Google Scholar 

  89. Ayabe S, Nagashima S, Furuno T, Takahashi T, Yuki TT, Hirota H (1991) Growth and isoprenoid metabolism of cultured Picrasma quassioides cells. Plant Tissue Cult Lett 8:198–200

    Article  CAS  Google Scholar 

  90. Toma W, de Gracioso JS, de Andrade FD, Hiruma-Lima CA, Vilegas W, Souza Brito AR (2002) Antiulcerogenic activity of four extracts obtained from the bark wood of Quassia amara L. (Simaroubaceae). Biol Pharm Bull 25:1151–1155

    Article  CAS  Google Scholar 

  91. Scragg AH, Allan EJ (1986) Production of the triterpenoid quassin in callus and cell suspension cultures of Picrasma quassioides Bennett. Plant Cell Rep 5:356–359

    Article  CAS  Google Scholar 

  92. Lander V, Worner M, Kirchenmayer C, Wintoch H, Schreier P (1990) Application of solid-phase extraction for rapid sample preparation in the determination of food constituents asarone II, quinine, and coumarin quassin in spirits. Z Fur Lebensm Und -Forsch A 190:410–413

    Article  CAS  Google Scholar 

  93. Dou J, Khan IA, McChesney DM, Burabdt CL (1996) Qualitative and quantitative high performance liquid chromatographic analysis of quassinoids in simaroubaceae plants. Phytochem Anal 7:192–200

    Article  CAS  Google Scholar 

  94. Vitanyi G, Bihasti-Karsai E, Lefler J, Lelik L (1997) Application of high performance liquid chromatography/mass spectrometry with thermospray ionization to the detection of quassinoids extracted from Quassia amara L. Rapid Commun Mass Spectrom 11:691–693

    Article  CAS  Google Scholar 

  95. Nunomura RCS, Silva ECC, Nunomura SM, Amaral ACF, Barreto AS, Siani AC, Pohlit AM (2012) Quantification of antimalarial quassinoids neosergeolide and isobrucein b in stem and root infusions of Picrolemma sprucei Hook F. by HPLC-UV analysis. In: Dhanarasu S (eds) Chromatography and its applications. In-Tech Publishers, Rijeka, Croatia, pp 187–200. ISBN:978-953-51-0357-8

    Google Scholar 

  96. Sugimoto N, Sato K, Yamazaki T, Tanamoto K (2003) Analysis of constituents in Jamaica quassia extract, a natural bittering agent. Shokuhin Eiseigaku Zasshi 44(6):328–331

    Article  CAS  Google Scholar 

  97. Cardoso MLC, Kameib MS, Nunesa RF, Lazerib NS, Netoa JRS, Novelloa CR, Bruschi ML (2008) Development and validation of an HPLC method for analysis of Picrasma crenata. J Liq Chromatogr Relat Technol 32:72–79

    Article  CAS  Google Scholar 

  98. Sarais G, Cossu M, Cabras P, Caboni P (2010) Liquid chromatography electrospray ionization tandem mass spectrometric determination of quassin and neoquassin in fruits and vegetables. J Agric Food Chem 58:2807–2811

    Article  CAS  Google Scholar 

  99. Chua LS, Amin NAM, Neo JCH, Lee TH, Lee CT, Sarmidia MR, Aziz RA (2011) LC–MS/MS-based metabolites of Eurycoma longifolia (Tongkat Ali) in Malaysia (Perak and Pahang). J Chromatogr B 879:3909–3919

    Article  CAS  Google Scholar 

  100. Teh CH, Murugaiyah V, Chan KL (2011) Developing a validated liquid chromatography-mass spectrometric method for the simultaneous analysis of five bioactive quassinoid markers for the standardization of manufactured batches of Eurycoma longifolia Jack extract as antimalarial medicaments. J Chromatogr A 1218:1861–1877

    Article  CAS  Google Scholar 

  101. Scragg AH, Allan EJ (1994) Quassia amara (Surinam Quassia): in vitro culture and the production of quassin. In: Bajaj YPS (eds) Biotechnology in agriculture and forestry, vol 26. Medicinal and aromatic plants VI. Springer, Heidelberg, pp 316–326

    Google Scholar 

  102. Robins RJ, Rhodes MJC (1984) High-performance liquid chromatographic methods for the analysis and purification of quassinoids from Quassia amara. J Chromatogr A 283:436–440

    Article  CAS  Google Scholar 

  103. Concha-Herrera V, Torres-Lapasio JR, Vivo-Truyols G, Gracia-Alvarez-Coque MC (2007) A comparative study of the performance of acetonitrile and methanol in the multi-linear gradient separation of proteic primary amino acids. Anal Chim Acta 582:250–258

    Article  CAS  Google Scholar 

  104. Hanson JR (2001) The development of strategies for terpenoid structure determination. Nat Prod Rep 18:607–617

    Article  CAS  Google Scholar 

  105. Carl-Ove A (1958) Mass spectrometric studies on amino acid and peptide derivatives. Acta Chem Scand 12:1353

    Google Scholar 

  106. Mandal M, Chakraborty D (2012) Mass spectrometric detection of phenolic acids. In: Ramawat KG, Merillon LM (eds) Handbook of natural products. Springer, Berlin/Heidelberg/New York. doi:10.1007/978-3-642-22144-6_90

    Google Scholar 

  107. Taylor MJ, Keenan GA, Reid KB, Fernandez DU (2008) The utility of ultra-performance liquid chromatography/electrospray ionisation time-of-flight mass spectrometry for multi-residue determination of pesticides in strawberry. Rapid Commun Mass Spectrom 22:2731–2746

    Article  CAS  Google Scholar 

  108. Oshimi S, Takasaki A, Hirasawa Y, Hosoya T, Awang K, Hadi AHA, Ekasari W, Widyawaruyanti A, Morita H (2010) Delaumonones A and B, new antiplasmodial quassinoids from Laumoniera bruceadelpha. ChemInform 41. doi:10.1002/chin.201002202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipjyoti Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chakraborty, D., Pal, A. (2013). Quassinoids: Chemistry and Novel Detection Techniques. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_144

Download citation

Publish with us

Policies and ethics