Skip to main content

Microstructure, Engineering Aspects

  • Reference work entry
  • First Online:
Encyclopedia of Soil Science

The structure of fine soils is mainly studied using the techniques of electron and optical microscopy; engineers, geologists and pedologists have all contributed. Various methods were reviewed by Smart and Tovey (1982) and Bisdom et al. (1988). Leng et al. (1993) summarized methods of analyzing electron micrographs. Optical micrographs are often reduced to black‐and‐white before analysis. Polarizing microphotometry is used to measure anisotropy; the values quoted here are for anisotropy index, A:

((1))

where MAX and MIN are the maximum and minimum intensities of light transmitted by a thin section, which is rotated between crossed polarizers. (Jarrett, 1972, found that photometric analyses gave measurements which depended upon the impregnant used in preparing samples.) Smart et al. (1992) combine image analysis with polarizing microscopy. Computerized tomography is also a useful interpretive tool.

Computer simulations of the internal mechanics of large groups of particles are also made...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Andrawes, K.X., Krishnamurthy, D.N., and Barden, L., 1975. Fabric changes during deformation of oriented clays, Proc. 1 Baltic Conf. Soil Mech. Found Eng., 15–23.

    Google Scholar 

  • Bartoli, F., Philippy, R., Doirisse, M., Niquet, S., and Dubuit, M., 1991. Structure and self‐similarity in silty and sandy soils: the fractal approach. J. Soil Sci. 42: 167–185.

    Article  Google Scholar 

  • Bennett, R.H., Bryant, W.R., and Hulbert, M.H., eds., 1991. Microstructure of Fine‐Grained Sediments, from Mud to Shale. New York: Springer, 582 pp.

    Google Scholar 

  • Beutelspacher, H., and van der Marel, H.W., 1968. Atlas of Electron Microscopy of Clay Minerals and Their Admixtures – A Picture Atlas. Amsterdam: Elsevier, 333 pp.

    Google Scholar 

  • Bisdom, E.B.A., Tessier, D., and Schoute, J.F.T., 1988. Micromorphological techniques in research and teaching (submicroscopy). In Douglas, L.A., ed., Soil Micromorphology: A Basic and Applied Science. Amsterdam: Elsevier, pp. 581–603.

    Google Scholar 

  • Blackmore, A.V., and Miller, R.D., 1961. Tactoid size and osmotic swelling in calcium montmorillonite. Soil Sci. Soc. Am. Proc. 25: 169–173.

    Article  CAS  Google Scholar 

  • Bondarik, G.K., Berexinka, G.M., Tsareve, A.M., and Ierusalimskaya, E.N., 1970. Deformation and texture of water‐saturated clay soils. Proc. 1 Internat. Cong. Eng. Geol. 1: 165–179.

    Google Scholar 

  • Brewer, R., 1964. Fabric and Mineral Analysis of Soils. New York: Wiley, 470 pp.

    Google Scholar 

  • Brindley, G.W., 1953. An X‐ray method for studying orientation of micaceous minerals in shales, clays and similar materials. Min. Mag. 30: 71–78.

    Article  CAS  Google Scholar 

  • Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., and Tursina, T., 1985. Handbook of Soil Thin Section Description. Albrighton: Waine Research Publishing.

    Google Scholar 

  • Collins, K., and McGown, A., 1974. The form and function of microfabric features in a variety of natural soils. Geotechnique 24: 223–254.

    Article  Google Scholar 

  • Cundall, P.A., and Strack, O.D.L., 1979. A discrete numerical model for granular assemblies. Geotechnique 29: 47–65.

    Article  Google Scholar 

  • Gard, J.A., ed., 1971. The Electron‐Optical Investigation of Clays. London: Mineralogical Society, 383 pp.

    Google Scholar 

  • Glasbey, C.A., Horgan, G.W., and Darbyshire, J.F., 1991. Image analysis and three‐dimensional modelling of pores in soil aggregates. J. Soil Sci. 42: 479–486.

    Article  Google Scholar 

  • Grabowska‐Olszewska, B., Osipov, V., and Sokolov, V., 1984. Atlas of the Microstructure of Clay Soils. Warsaw: Panstwowe Wydawnictwo Naukowe.

    Google Scholar 

  • Grant, C.D., Dexter, A.R., and Huang, C., 1990. Roughness of soil fracture surfaces as a measure of soil microstructure. J. Soil Sci. 41: 95–110.

    Article  Google Scholar 

  • Jarrett, P.M., 1972. The effects of soil structure on the engineering behaviour of a sensitive clay. Q. J. Eng. Geol. 5: 103–110.

    Article  Google Scholar 

  • Kirby, J.M., 1991. The influence of soil deformation on the permeability to air. J. Soil Sci. 42: 227–235.

    Article  Google Scholar 

  • Leng, X., Hounslow, M.W., Bai, X., Luo, D., Costa, L.da F., Xue, X., Tovey, N.K., and Smart, P., 1993. Image analysis of clay microstructure. In Frost, J.D., and Wright, J.R., Digital image processing: techniques and applications in civil engineering. Proceedings of Engineering Foundation Conference, Hawaii, 1993. New York: American Society of Civil Engineers, pp. 77–86.

    Google Scholar 

  • Mackie‐Dawson, L.A., et al. 1989. Seasonal changes in the structure of clay soils in relation to soil management and crop type. Parts I and II. J. Soil Sci. 40: 269–292.

    Article  Google Scholar 

  • Magaldi, D., 1985. Degree of soil plasma orientation in relation to age in some hydromorphic soils of Tuscany, Italy. Proc. 7 Int. Working‐Meeting Soil Micromorphology, Paris. Plaisir: Association Française pour l'Etude du Sol, pp. 605–609.

    Google Scholar 

  • McConnachie, I., 1974. Fabric changes in consolidated kaolin. Geotechnique 24: 207–222.

    Article  Google Scholar 

  • McKyes, E., and Yong, R.N., 1971. Three techniques for fabric viewing as applied to shear distortion of a clay. Clays Clay Min. 19: 289–293.

    Article  CAS  Google Scholar 

  • Olson, R.E., and Mesri, G., 1970. Mechanisms controlling compressibility of clays. Am. Soc. Civil Eng. Proc. 96SM6: 1863–1878.

    Google Scholar 

  • Omer, B.M.A., 1978. A study of a layered clay from Grangemouth. Glasgow Ph.D. Thesis.

    Google Scholar 

  • Ringrose‐Voase, R.J., 1990. One‐dimensional image analysis of soil structure. I. Principles. J. Soil Sci. 41: 499–512.

    Article  Google Scholar 

  • Seed, H.B., and Chan, C.K., 1959. Structure and strength characteristics of compacted clays. Trans. Am. Soc. Civil Eng. 126: 1343–1407.

    Google Scholar 

  • Shibakova, V.S., 1970. Effect of clay texture upon its shearing strength. Proc. 1 Int. Cong. Eng. Geol. 1: 419–435.

    Google Scholar 

  • Smart, P., 1966a. Optical microscopy and soil structure. Nature 210: 1400.

    Article  Google Scholar 

  • Smart, P., 1966b. Particle arrangements in kaolin. Proc. 15th Natl Conf. Clays Clay Miner., 241–254.

    Google Scholar 

  • Smart, P., 1975. Soil microstructure. Soil Sci. 119: 385–393.

    Article  Google Scholar 

  • Smart, P., and Dickson, J.W., 1979. Deformation and shear of normally consolidated flocculated kaolin. Mechanisms of Deformation and Fracture – Proc. Interdisciplinary Conf. Lule, Oxford: Pergammon, pp. 129–136.

    Chapter  Google Scholar 

  • Smart, P., and Tovey, N.K., 1981. Electron Microscopy of Soils and Sediments: Examples. Oxford: Oxford University Press.

    Google Scholar 

  • Smart, P., and Tovey, N.K., 1982. Electron Microscopy of Soils and Sediments: Techniques. Oxford: Oxford University Press.

    Google Scholar 

  • Smart, P., Leng, X., and Bai, X., 1992. Image analysis of soil microstructure, pp. 905–912. In Géotechnique et Informaqtique ‐ Colloque International, Paris. Paris: Presses de l'Ecole National des Ponts et Chaussées.

    Google Scholar 

  • Søderblom, R., 1966. Chemical aspects of quick clay formation. Eng. Geol. 1: 415–431.

    Article  Google Scholar 

  • Tovey, N.K., and Wong, K.Y., 1973. The preparation of soils and other geological materials for the S.E.M.. Proc. Int. Symp. Soil Structure, Gothenburg. Stockholm: Swedish Geotechnical Institute, pp. 59–67.

    Google Scholar 

  • Vermeer, P.A., 1990. The orientation of shear bands in triaxial tests. Geotechnique 40: 223–236.

    Article  Google Scholar 

  • Warkentin, B.P., Bolt, G.H., and Miller, R.D., 1957. Swelling pressure of montmorillonite. Soil Sci. Soc. Am. Proc. 21: 495–497.

    Article  Google Scholar 

  • Weir, A.H., 1960. A study in the relationships between certain physical properties and structure and composition of montmorillonitic group minerals. Ph.D. thesis, Rothamsted, London, 226 pp.

    Google Scholar 

  • Young, I.M., and Crawford, J.W., 1991. The fractal structure of soil aggregates: its measurement and interpretation. J. Soil Sci. 42: 187–192.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this entry

Cite this entry

Hossner, L.R. et al. (2008). Microstructure, Engineering Aspects. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_357

Download citation

Publish with us

Policies and ethics