Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Earth’s climate has changed, within life-sustaining bounds, from warm to cool intervals, on scales from thousands to hundreds of millions of years. In the Phanerozoic Eon there have been three intervals of glaciation (Ordovician, Carboniferous and Cenozoic) lasting tens of millions of years, with ice down to sea level at mid-latitudes (Frakes et al., 1992; Crowell, 1999). These cool “icehouse” intervals were generally times of lower sea level, lower CO2 percentage in the atmosphere, less net photosynthesis and carbon burial, and less oceanic volcanism than during alternating “greenhouse” intervals (Fischer, 1986). The transitions from Phanerozoic icehouse to greenhouse intervals were synchronous with some biotic crises or mass extinction events, reflecting complex feedbacks between the biosphere and the hydrosphere.

Figure I8 summarizes Earth’s entire paleoclimate history, and Figure I9shows the better-known Phanerozoic Eon, with carbon, strontium and sulfur isotopic ratios that are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Amthor, J.E., Grotzinger, J.P., Schroeder, S., Bowring, S.A., Ramezani, J., Martin, M.W., and Matter, A., 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31, 431–434.

    Google Scholar 

  • Barfod, G.H., Albarede, F., Knoll, A.H., Xiao, S., Telouk, P., Frei, R., and Baker, J., 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planet. Sci. Lett., 201, 203–212.

    Google Scholar 

  • Berger, W.H., 1982. Climate steps in ocean history—Lessons from the Pleistocene. In Berger, W.H., Crowell, J.C., et al. (eds), Climate in Earth History, Studies in Geophysics. Washington, DC: National Academy Press, pp. 43–54.

    Google Scholar 

  • Berner, R.A., 1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science, 249, 1382–1386.

    Google Scholar 

  • Berner, R.A., 1991. A model of atmospheric CO2 over Phanerozoic time. Am. J. Sci., 291, 339–376.

    Google Scholar 

  • Berner, R.A., and Kothavala, Z., 2001. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci., 301, 182–204.

    Google Scholar 

  • Bowring, S., Myrow, P., Landing, E., Ramezani, J., and Grotzinger, J., 2003. Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoans. Geophys. Res. Abstr., 5, 13,219.

    Google Scholar 

  • Brasier, M., McCarron, G., Tucker, R., Leather, J., Allen, P., and Shields, G., 2000. New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology, 28, 175–178.

    Google Scholar 

  • Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B., 1982. Variations of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516–519.

    Google Scholar 

  • Calver, C.R., Black, L.P., Everard, J.L., and Seymour, D.B., 2004. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology, 32, 893–896.

    Google Scholar 

  • Chen, C.-T.A., and Drake, E.T., 1986. Carbon dioxide increase in the atmosphere and oceans and possible effects on climate. Annu. Rev. Earth Planet. Sci., 14, 201–236.

    Google Scholar 

  • Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y., 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308, 95–98.

    Google Scholar 

  • Crowell, J.C., 1999. Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate System. 192, Boulder, CO: Geological Society of America Memoir 106pp.

    Google Scholar 

  • Crowley, T.J., and Berner, R.A., 2001. CO2 and climate change. Science, 292, 870–872.

    Google Scholar 

  • Deynoux, M., Miller, J.M.G., Domack, E.W., Eyles, N., Fairchild, I.J., and Young, G.M. (eds.), 1994. Earth’s Glacial Record. Cambridge, UK: Cambridge University Press, 266pp.

    Google Scholar 

  • Evans, D.A.D., 2000. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci., 300, 347–433.

    Google Scholar 

  • Fanning, C.M., and Dehler, C.M., 2005, Constraining depositional ages for Neoproterozoic siliciclastic sequences through detrital zircon ages: A ca. 770 maximum age for the lower Uinta Mountain Group. Geological Society of America Abstracts with Programs, 37.

    Google Scholar 

  • Fanning, C.M., and Link, P.K., 2004. 700 Ma U-Pb SHRIMP ages for Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology, 32, 881–884.

    Google Scholar 

  • Fischer, A.G., 1982. Long-term climatic oscillations recorded in stratigraphy. In Berger, W. (ed.), Climate in Earth History. National Research Council, Studies in Geophysics, Washington, DC: National Academy Press, pp. 97–104.

    Google Scholar 

  • Fischer, A.G., 1986. Climatic rhythms recorded in strata. Annu. Rev. Earth Planet. Sci., 14, 351–376.

    Google Scholar 

  • Fischer, A.G., and Arthur, M.A., 1977. Secular variations in the pelagic realm. In Cook, H.C., and Enos, P. (eds.), Deep Water Carbonate Environments. SEPM Special Publication 25, pp. 18–50.

    Google Scholar 

  • Frakes, L.A., Francis, J.E., and Syktus, J.I., 1992. Climate modes of the Phanerozoic. New York: Cambridge University Press, 274pp.

    Google Scholar 

  • Grotzinger, J.P., Bowring, S.A., Saylor, B.Z., and Kaufman, A.J., 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270, 598–604.

    Google Scholar 

  • Harland, W.B., 1964. Critical evidence for a great infra-Cambrian glaciation. Geologische Rundschau, 54, 45–91.

    Google Scholar 

  • Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G., and Smith, D.G. (eds.), 1990. A Geologic Time Scale 1989. Cambridge, UK: Cambridge University Press, 263pp.

    Google Scholar 

  • Hoffman, P.F., and Schrag, D.P., 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.

    Google Scholar 

  • Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., 1998. A Neoproterozoic snowball Earth. Science, 281, 1342–1346.

    Google Scholar 

  • Hoffmann, K.-H., Condon, D.J., Bowring, S.A., and Crowley, J.L., 2004. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology, 32, 817–820.

    Google Scholar 

  • Holser, W.T., Schidlowski, M., Mackenzie, F.T., and Maynard, J.B., 1988. Biogeochemical cycles of carbon and sulfur. In Gregor, C.B., Garrels, R.M., Mackenzie, F.T., and Maynard, J.B. (eds.), Chemical Cycles in the Evolution of the Earth. New York: Wiley, pp. 105–173.

    Google Scholar 

  • Jiang, G., Kennedy, M.J., and Christie-Blick, N., 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426, 822–826.

    Google Scholar 

  • Karlstrom, K.E., Bowring, S.A., Dehler, C.M., Knoll, A.H., Porter, S.M., DesMarais, D.J., Weil, A.B., Sharp, Z.D., Geissman, J.W., Elrick, M.B., Timmons, J.M., Crossey, L.J., and Davidek, K.L., 2000. Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology, 28, 619–622.

    Google Scholar 

  • Kasting, J.F., 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res., 34, 205–229.

    Google Scholar 

  • Kaufman, A.J., Knoll, A.H., and Narbonne, G.M., 1997. Isotopes, ice ages, and terminal Proterozoic Earth history. Proc. Natl. Acad. Sci., 94, 6600–6605.

    Google Scholar 

  • Kennedy, M.J., Christie-Blick, N., and Sohl, L.E., 2001. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology, 29, 443–446.

    Google Scholar 

  • Kirschvink, J.L., 1992. Late Proterozoic low-latitude global glaciation: The snowball Earth, In Schopf, J.W., and Klein, C. (eds.), The Proterozoic biosphere. New York: Cambridge University Press, pp. 51–52.

    Google Scholar 

  • Knoll, A.K., 1991, End of the Proterozoic Eon. Sci. Am., 265, 64–73.

    Google Scholar 

  • Knoll, A.K., 2000. Learning to tell Neoproterozoic time. Precambrian Res., 100, 3–20.

    Google Scholar 

  • Knoll, A.H., and Walter, M.R., 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356, 673–677.

    Google Scholar 

  • Kump, L.R., 2002. Reducing uncertainty about carbon dioxide as a climate driver. Nature, 419, 188–190.

    Google Scholar 

  • Link, P.K., and Gostin, V.A., 1981. Facies and paleogeography of Sturtian glacial strata (Late Precambrian), South Australia. Am. J. Sci., 281, 353–374.

    Google Scholar 

  • Lorentz, N.J., Corsetti, F.A., and Link, P.K., 2004. Seafloor precipitates and C-isotope stratigraphy from the Neoproterozoic Scout Mountain Member of the Pocatello Formation, southeast Idaho: implications for Earth System behavior. Precambrian Res., 130, 57–70.

    Google Scholar 

  • Lund, K., Aleinikoff, J.N., Evans, K.V., and Fanning, C.M., 2003. SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geol. Soc. Am. Bull., 115, 349–372.

    Google Scholar 

  • Narbonne, G.M., 2003. I.U.G.S. Subcommission on the Terminal Proterozoic System, 18th circular (September 2003). http://geol.queensu.ca/people/narbonne/trm-prot/(June 2004).

  • Niklas, K.J., Tiffney, B.H., and Knoll, A.H., 1985. Patterns in vascular land plant diversification: an analysis at the species level. In Valentine, J.W. (ed.), Phanerozoic Diversity Patterns: Profiles in macroevolution. Princeton, NJ: Princeton University Press, pp. 97–128.

    Google Scholar 

  • Parrish, J.T., 1982. Upwelling and petroleum source beds, with reference to the Paleozoic. AAPG Bull., 66, 750–774.

    Google Scholar 

  • Rampino, R., and Stothers, R.B., 1986. Geological periodicities and the galaxy. In Smoluchowski, R., Bahcall, J.N., and Matthews, M.S. (eds.), The Galaxy and the Solar System. Tucson, AZ: University of Arizona Press, pp. 241–259.

    Google Scholar 

  • Ridgwell, A.J., Kennedy, M.J., and Calderia, K., 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science, 302, 859–862.

    Google Scholar 

  • Rothman, D.H., 2002. Atmospheric carbon dioxide levels for the last 500 million years. Proc. Natl. Acad. Sci., 99, 4167–4171.

    Google Scholar 

  • Shaviv, N.R., and Veizer, J., 2003. Celestial driver of Phanerozoic climate? GSA Today, 13, 4–10.

    Google Scholar 

  • Sohl, L.E., Christie-Blick, N.M., and Kent, D.V., 1999. Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciations in Neoproterozoic time. Geol. Soc. Am. Bull., 111, 1120–1139.

    Google Scholar 

  • Stanley, S.M., and Hardie, L.A., 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol., 144, 3–19.

    Google Scholar 

  • Vail, P.R., Mitchum, R.M. Jr., Todd, R.G., Widmier, J.M., Thompson, S., III, Sangree, J.B., Bubb, J.N., and Hatlelid, W.G., 1977. Seismic stratigraphy and global changes of sea level. In Payton, C.E. (ed.), Seismic stratigraphy—Application to Hydrocarbon Exploration. 26, Tulsa, OK: American Association of Petroleum Geologists Memoir pp. 29–212.

    Google Scholar 

  • Veevers, J.J., 1990. Tectonic-climatic supercycle in the billion-year plate-tectonic eon: Permian Pangean icehouse alternates with Cretaceous dispersed continent Greenhouse. Sediment. Geol., 68, 1–16.

    Google Scholar 

  • Veevers, J.J., 1994. Pangea: Evolution of a supercontinent and its consequences for Earth’s paleoclimate and sedimentary environments. In Klein, G.D. (ed.), Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. Geological Society of America Special Paper 288, Boulder, CO: Geological Society of America, pp. 13–23.

    Google Scholar 

  • Veizer, J., Godderis, Y., and Francois, L.M., 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408, 698–701.

    Google Scholar 

  • Williams, G.E., 1975. Late Precambrian glacial climate and the Earth’s obliquity. Geol. Mag., 112, 441–444.

    Google Scholar 

  • Williams, M. and 2004. Dating sedimentary sequences: in situ U/Th-Pb microprobe dating of early diagenetic monazite and Ar–Ar dating of marcasite nodules: Case studies from Neoproterozoic black shales in the southwestern U.S. Geological Society of America Abstracts with Programs, 35, 595.

    Google Scholar 

  • Worsley, T.R., Nance, R.D., and Moody, J.B., 1986. Tectonic cycles and the history of the Earth’s biogeochemical and paleooceanic record. Paleooceanography, 1, 233–263.

    Google Scholar 

  • Zhang, S., Jiang, G., Zhang, J., Song, B., Kennedy, M.J., and Christie-Blick, N., 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 33, 473–476.

    Google Scholar 

  • Zhou, C., Tucker, R.D., Xiao, S., Peng, Z., Yuan, X., and Chen, Z., 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32, 437–440.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Link, P.K. (2009). “Icehouse” (Cold) Climates. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_112

Download citation

Publish with us

Policies and ethics