Skip to main content

Bacteriophage as Biocontrol Agents

  • Living reference work entry
  • First Online:
Bacteriophages

Abstract

Bacteriophages produce an antibacterial effect, but that does not make them the same thing as conventional chemical antibacterial agents (antibiotics). Despite this, large amounts of time and resources are being spent on putting bacteriophage therapeutics through the established “antibiotic development pathway”. But, at least so far, this approach does not seem to be delivering. The nature of bacteriophages and their relationship to existing biological controls are discussed, supporting the conclusion that bacteriophages need to be used as what they really are – biological control agents targeting bacteria, working in an as yet unproven (if not entirely novel) clinical setting. As such, they have the unique advantages of biological control agents, as well their equally unique limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agriphage (2020) Available online at: https://www.agriphage.com/product-info/. Retrieved 11 Jun 2020

  • Al-Shayeb B, Sachdeva R, Chen L et al (2020) Clades of huge phages from across Earth’s ecosystems. Nature 578:425–431. https://doi.org/10.1038/s41586-020-2007-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrowes BH, Molineux IJ, Fralick JA (2019) Directed in vitro evolution of therapeutic bacteriophages: the Appelmans protocol. Viruses 11:241

    Article  CAS  Google Scholar 

  • Cauda V, Onida B, Platschek B et al (2008) Large antibiotic molecule diffusion in confined mesoporous silica with controlled morphology. J Mater Chem 18:5888–5899. https://doi.org/10.1039/B805395B

    Article  CAS  Google Scholar 

  • CSIRO (2020) Weed biocontrol: background. Available online at: https://research.csiro.au/weed-biocontrol/background/. Downloaded 12 June 2020

  • Doogue MP, Polasek TM (2013) The ABCD of clinical pharmacokinetics. Ther Adv Drug Saf 4(1):5–7. https://doi.org/10.1177/2042098612469335

    Article  PubMed  PubMed Central  Google Scholar 

  • EPA (2020) Integrated Pest management (IPM) principles. Available online at: https://www.epa.gov/safepestcontrol/integrated-pest-management-ipm-principles. Accessed 12 June 2020

  • Harper DR (2013) Biological control by micro-organisms. In: The encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Harper DR, Parracho HMRT, Walker J et al (2014) Bacteriophages and biofilms. Antibiotics 3:270–284

    Article  CAS  Google Scholar 

  • Huh H, Wong S, St. Jean J, Slavcev R (2019) Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev 145:4–17. https://doi.org/10.1016/j.addr.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  • Jault P, Leclerc T, Jennes S et al (2019) Efficacy and Tolerability of a Cocktail of Bacteriophages to Treat Burn Wounds Infected by Pseudomonas Aeruginosa (PhagoBurn): A Randomised, Controlled, Double-Blind Phase 1/2 Trial Lancet Infect Dis 19:35–45. https://doi.org/10.1016/S1473-3099(18)30482-1

  • Jończyk-Matysiak E, Weber-Dąbrowska B, Owczarek B et al (2017) Phage-phagocyte interactions and their implications for phage application as therapeutics. Viruses 9:150

    Article  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA 104(27):11197–11202. https://doi.org/10.1073/pnas.0704624104. Epub 2007 Jun 25. PMID: 17592147; PMCID: PMC1899193

  • Łusiak-Szelachowska M, Żaczek M, Weber-Dąbrowska B et al (2017) Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiol 12:109–117

    Google Scholar 

  • Markkula M, Tiittanen K, Mieminen M (1972) Experiences of cucumber growers on control of the two-spotted spider mite Tetranychus telarius (L.) with the phytoseid mite Phytoseiulus persimilis. Annales Agriculturae Fenniae 11:74–78

    Google Scholar 

  • Marza JA, Soothill JS, Boydell P, Collyns TA (2006) Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 32:644–646

    Article  Google Scholar 

  • Meibohm B, Derendorf H (1997) Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 35:401–413

    CAS  PubMed  Google Scholar 

  • Payne RJH, Jansen VAA (2002) Evidence for a phage proliferation threshold? J Virol 76:13123–13124

    Article  CAS  Google Scholar 

  • PubChem (2020) Available online at: https://pubchem.ncbi.nlm.nih.gov/. Accessed 11 June 2020

  • Ryan EM, Gorman SP, Donnelly RF, Gilmore BF (2011) Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol 63:1253–1264

    Article  CAS  Google Scholar 

  • Sarker SA, Sultana S, Reuteler G et al (2016) Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4:124–137

    Google Scholar 

  • Sauka DH, Benintende GB (2008) Bacillus thuringiensis: generalidades. Un acercamiento a su empleo en el biocontrol de insectos lepidópteros que son plagas agrícolas [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests]. Rev Argent Microbiol 40:124–140

    CAS  PubMed  Google Scholar 

  • Segall AM, Roach DR, Strathdee SA (2019) Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Curr Opin Microbiol 51:46–50. https://doi.org/10.1016/j.mib.2019.03.005

    Article  PubMed  Google Scholar 

  • Shelton A (2020) Biological control: a guide to natural enemies in North America. Available at: https://biocontrol.entomology.cornell.edu/index.php. Accessed 11 June 2020

  • Tagliaferri TL, Jansen M, Horz HP (2019) Fighting pathogenic Bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol 9:22. https://doi.org/10.3389/fcimb.2019.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinner GK, Vladisavljević GT, Clokie MRJ, Malik DJ (2017) Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release. PLoS One 12:e0186239

    Google Scholar 

  • Whiteley M, Diggle SP, Greenberg EP (2018) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320. https://doi.org/10.1038/nature24624

    Article  CAS  Google Scholar 

  • Wright A, Hawkins C, Anggard EA, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34:349–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harper, D.R. (2020). Bacteriophage as Biocontrol Agents. In: Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics