Skip to main content

Mitochondrial Respiration

  • Reference work entry
  • First Online:
Encyclopedia of Exercise Medicine in Health and Disease

Synonyms

Oxidative phosphorylation; Substrate oxidation

Definition

Mitochondrial respiration is the set of metabolic reactions and processes requiring oxygen that takes place in mitochondria to convert the energy stored in macronutrients to adenosine triphosphate (ATP), the universal energy donor in the cell.

Basic Mechanisms

Approximately half a century ago, mitochondria, cellular organelles bounded by a highly folded inner and fairly smooth outer membrane were recognized as the cellular “power plants” providing the energy required for metabolism. The mechanism that underlies the energy-generating capacity of mitochondria was described by Mitchell in 1961 and awarded with the 1978 Nobel Prize in chemistry. Mitchell’s chemiosmotic theory describes how the oxidation of nutritional substrates is coupled to the synthesis of adenosine triphosphate (ATP), the compound in which cellular energy is conserved. In mitochondria, the macronutrient-derived reducing equivalents NADH and FADH2...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  2. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:E1340–E1346

    CAS  PubMed  Google Scholar 

  3. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    Article  CAS  PubMed  Google Scholar 

  4. Tonkonogi M, Sahlin K (1997) Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand 161:345–353

    Article  CAS  PubMed  Google Scholar 

  5. Phielix E, Meex R, Moonen-Kornips E, Hesselink MK, Schrauwen P (2011) Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53:1714–1721

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Schrauwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hoeks, J., Hesselink, M., Schrauwen, P. (2012). Mitochondrial Respiration. In: Mooren, F.C. (eds) Encyclopedia of Exercise Medicine in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29807-6_136

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29807-6_136

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36065-0

  • Online ISBN: 978-3-540-29807-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics