Skip to main content

Abstract

In drug development, it is very important to evaluate the potential toxicological risk of a drug candidate as early as possible to reduce costs and time in drug development process. In the traditional way the toxicological risk of a compound is investigated with the help of a battery of in vivo and in vitro methods. Since the late 1970s many different in silico methods for the prediction of toxicity have been developed. The term in silico stems from the computer component silicium; in silico methods, therefore, refer to methods or prediction using computational approaches. In silico methods have the advantage that they can make fast predictions for a large set of compounds in a high-throughput mode. Another advantage is that in silico methods make their prediction based on the structure of a compound even before it has been synthesized. In silico methods can, therefore, be used at a very early stage in the drug development process, for compounds planned to be synthesized, for which no or only little compound is available, or also for impurities or degradation products later in the drug development process, for which no synthesis is available. However, good predictivity of an in silico method is crucial if the method is to be introduced into the drug development process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Arvidson KB (2008) FDA toxicity databases and real-time data entry. Toxicol Appl Pharmacol 233:17–19

    Article  PubMed  CAS  Google Scholar 

  • Barratt MD, Rodford RA (2001) The computational prediction of toxicity. Curr Opin Chem Biol 5:383–388

    Article  PubMed  CAS  Google Scholar 

  • Barratt MD, Castell JV, Miranda MA, Langowski JJ (2000) Development of an expert system rulebase for the prospective identification of photoallergens. J Photochem Photobiol B 58:54–61

    Article  PubMed  CAS  Google Scholar 

  • Benfenati E, Gini G (1997) Computational predictive programs (expert systems) in toxicology. Toxicology 119:213–225

    Article  PubMed  CAS  Google Scholar 

  • Benigni R, Giuliani A (1996) Quantitative structure-activity relationship (QSAR) studies of mutagens and carcinogens. Med Res Rev 16:267–284

    Article  PubMed  CAS  Google Scholar 

  • Benigni R, Giuliani A, Franke R, Gruska A (2000) Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines. Chem Rev 100:3697–3714

    Article  PubMed  CAS  Google Scholar 

  • Blower PE, Cross KP (2006) Decision tree methods in pharmaceutical research. Curr Top Med Chem 6:31–39

    Article  PubMed  CAS  Google Scholar 

  • Blower PE, Cross KP, Eichler GS, Myatt GJ, Weinstein JN, Yang C (2006) Comparison of methods for sequential screening of large compound sets. Comb Chem High Throughput Screen 9:115–122

    Article  PubMed  CAS  Google Scholar 

  • Boehm HJ, Klebe G, Kubinyi H (1996) Wirkstoffdesign. Der Weg zum Arzneimittel. Spektrum Akademischer Verlag, Heidelberg/Berlin/Oxford

    Google Scholar 

  • Cariello NF, Wilson JD, Britt BH, Wedd DJ, Burlinson B, Gombar V (2002) Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Deductive estimation of risk from existing knowledge. Toxicity prediction by komputer assisted technology. Mutagenesis 17:321–329

    Article  PubMed  CAS  Google Scholar 

  • CCRIS database: Chemical Carcinogenesis Research Info System. http://toxnet.nlm.nih.gov/

  • Cross KP, Myatt G, Yang C, Fligner MA, Verducci JS, Blower PE Jr (2003) Finding discriminating structural features by reassembling common building blocks. J Med Chem 46:4770–4775

    Article  PubMed  CAS  Google Scholar 

  • Cunningham AR, Klopman G, Rosenkranz HS (1998) Identification of structural features and associated mechanisms of action for carcinogens in rats. Mutat Res 405:9–27

    Article  PubMed  CAS  Google Scholar 

  • Dearden JC (2003) In silico prediction of drug toxicity. J Comput Aided Mol Des 17:119–127

    Article  PubMed  CAS  Google Scholar 

  • Debnath AK, Debnath G, Shusterman AJ, Hansch C (1992) QSAR investigation of the role of hydrophobicity in regulating mutagenicity in the Ames test: 1. Mutagenicity of aromatic and heteroaromatic amines in Salmonella typhimurium TA98 and TA100. Environ Mol Mutagen 19:37–52

    Article  PubMed  CAS  Google Scholar 

  • Durham SK, Pearl GM (2001) Computational methods to predict drug safety liabilities. Curr Opin Drug Discov Devel 4:110–115

    PubMed  CAS  Google Scholar 

  • Enslein K, Gombar VK, Blake BW (1994) International commission for protection against environmental mutagens and carcinogens. Use of SAR in computer-assisted prediction of carcinogenicity and mutagenicity of chemicals by the TOPKAT program. Mutat Res 305:47–61

    Article  PubMed  CAS  Google Scholar 

  • Fellows MD, Boyer S, O'Donovan MR (2011) The incidence of positive results in the mouse lymphoma TK assay (MLA) in pharmaceutical screening and their prediction by MultiCase MC4PC. Mutagenesis 26:529–532

    Article  PubMed  CAS  Google Scholar 

  • Fostel JM (2008) Towards standards for data exchange and integration and their impact on a public database such as CEBS (Chemical Effects in Biological Systems). Toxicol Appl Pharmacol 233:54–62

    Article  PubMed  CAS  Google Scholar 

  • Free SM Jr, Wilson JW (1964) A mathematical contribution to structure activity studies. J Med Chem 7:395–399

    Article  PubMed  CAS  Google Scholar 

  • Frid AA, Matthews EJ (2010) Prediction of drug-related cardiac adverse effects in humans–B: use of QSAR programs for early detection of drug-induced cardiac toxicities. Regul Toxicol Pharmacol 56:276–289

    Article  PubMed  CAS  Google Scholar 

  • Gombar VK, Enslein K (1996) Assessment of n-octanol/water partition coefficient: when is the assessment reliable? J Chem Inf Comput Sci 36:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Greene N (2002) Computer systems for the prediction of toxicity: an update. Adv Drug Deliv Rev 54:417–431

    Article  PubMed  CAS  Google Scholar 

  • Greene N, Judson PN, Langowski JJ, Marchant CA (1999) Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ Res 10:299–314

    Article  PubMed  CAS  Google Scholar 

  • Hansch C (1969) A quantitative approach to biochemical structure-activity relationships. Acc Chem Res 2:232–239

    Article  CAS  Google Scholar 

  • Hansch C, Fujita T (1964) ρ-σ-π- analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  • Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180

    Article  CAS  Google Scholar 

  • Hillebrecht A, Muster W, Brigo A, Kansy M, Weiser T, Singer T (2011) Comparative evaluation of in silico systems for Ames test mutagenicity prediction: scope and limitations. Chem Res Toxicol 24:843–854

    Article  PubMed  CAS  Google Scholar 

  • Klopman G (1984) Artificial intelligence approach to structure-activity studies: computer automated structure evaluation of biological activity of organic molecules. J Am Chem Soc 106:7315–7321

    Article  CAS  Google Scholar 

  • Klopman G, Rosenkranz HS (1994) Approaches to SAR in carcinogenesis and mutagenesis. Prediction of carcinogenicity/mutagenicity using MULTI-Case. Mutat Res 305:33–46

    Article  PubMed  CAS  Google Scholar 

  • Kubinyi H (2002) From narcosis to hyperspace: the history of QSAR. Quant Struct Act Relat 21:348–356

    Article  CAS  Google Scholar 

  • Langton K, Patlewicz GY, Long A, Marchant CA, Basketter DA (2006) Structure-activity relationships for skin sensitization: recent improvements to Derek for Windows. Contact Dermatitis 55:342–347

    Article  PubMed  CAS  Google Scholar 

  • Leadscope homepage. www.leadscope.com

  • Lemont KB, Lowell H (1999) Molecular structure description: the electrotopological state. Academic, San Diego

    Google Scholar 

  • Lhasa homepage. https://www.lhasalimited.org/

  • Marchant CA (1996) Prediction of rodent carcinogenicity using the DEREK system for 30 chemicals currently being tested by the national toxicology program. Environ Health Perspect 104S:1065–1073

    Google Scholar 

  • Marchant CA, Briggs KA, Long A (2008) In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for Windows, Meteor, and Vitic. Toxicol Mech Methods 18:177–187

    Article  PubMed  CAS  Google Scholar 

  • Matthews EJ, Contrera JF (1998) A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASE QSAR-ES software. Regul Tox Pharmacol 28:242–264

    Article  CAS  Google Scholar 

  • Matthews EJ, Kruhlak NL, Benz RD, Contrera JF, Marchant CA, Yang C (2008) Combined use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for Windows software to achieve high-performance, high-confidence, mode of action-based predictions of chemical carcinogenesis in rodents. Toxicol Mech Methods 18:189–206

    Article  PubMed  CAS  Google Scholar 

  • Mombelli E (2008) An evaluation of the predictive ability of the QSAR software packages, DEREK, HAZARDEXPERT and TOPKAT, to describe chemically-induced skin irritation. Altern Lab Anim 36:15–24

    PubMed  CAS  Google Scholar 

  • MultiCase homepage. www.multicase.com

  • Patlewicz G, Rodford R, Walker JD (2003) Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity. Environ Toxicol Chem 22:1885–1893

    Article  PubMed  CAS  Google Scholar 

  • Perkins R, Fang H, Tong W, Welsh WJ (2003) Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem 22:1666–1679

    Article  PubMed  CAS  Google Scholar 

  • Richard AM (1998) Structure-based methods for predicting mutagenicity and carcinogenicity: are we there yet? Mutat Res 400:493–507

    Article  PubMed  CAS  Google Scholar 

  • Richardt AM, Benigni R (2002) AI and SAR approaches for predicting chemical carcinogenicity: survey and status report. SAR QSAR Environ Res 13:1–19

    Article  PubMed  CAS  Google Scholar 

  • Ringsted T, Nikolov N, Jensen GE, Wedebye EB, Niemelä J (2009) QSAR models for P450 (2D6) substrate activity. SAR QSAR Environ Res 20:309–325

    Article  PubMed  CAS  Google Scholar 

  • Roberts G, Myatt GJ, Johnson WP, Cross KP, Blower PE Jr (2000) LeadScope: software for exploring large sets of screening data. J Chem Inf Comput Sci 40:1302–1314

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz HS, Cunningham AR, Zhang YP, Claycamp HG, Macina OT, Sussman NB, Grant SG, Klopman G (1999) Development, characterization and application of predictive-toxicology models. SAR QSAR Environ Res 10:277–298

    Article  PubMed  CAS  Google Scholar 

  • Saiakhov RD, Klopman G (2008) MultiCASE expert systems and the REACH initiative. Toxicol Mech Methods 18:159–175

    Article  PubMed  CAS  Google Scholar 

  • Saiakhov RD, Klopman G (2010) Benchmark performance of MultiCASE Inc. software in Ames mutagenicity set. J Chem Inf Model 50:1521

    Article  PubMed  CAS  Google Scholar 

  • Sanderson DM, Earnshaw CG (1991) Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum Exp Toxicol 10:261–273

    Article  PubMed  CAS  Google Scholar 

  • Smith Pease CK, Basketter DA, Patlewicz GY (2003) Contact allergy: the role of skin chemistry and metabolism. Clin Exp Dermatol 28:177–183

    Article  PubMed  CAS  Google Scholar 

  • Snyder RD, Pearl GS, Mandakas G, Choy WN, Goodsaid F, Rosenblum IY (2004) Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules. Environ Mol Mutagen 43:143–158

    Article  PubMed  CAS  Google Scholar 

  • Synder RD, Pearl GS, Mandakas G, Choy WN, Goodsaid F, Rosenblum IY (2004) Assessment of the sensitivity of the computational programs DEREK, TOPKAT and MCASE in the prediction of the genotoxicity of pharmaceutical molecules. Environ Mol Mutagen 43:143–158

    Article  Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors, vol 11, Methods and principles in medicinal chemistry. Wiley VCH, Weinheim

    Book  Google Scholar 

  • TOPKAT-homepage. http://www.accelrys.com/products/topkat/

  • Tuppurainen K (1999) Frontier orbital energies, hydrophobicity and steric factors as physical QSAR descriptors of molecular mutagenicity. A review with a case study: MX compounds. Chemosphere 38:3015–3030

    Article  PubMed  CAS  Google Scholar 

  • Valerio LG, Yang C, Arvidson KB, Kruhlak NL (2010) A structural feature-based computational approach for toxicology predictions. Expert Opin Drug Metab Toxicol 6:505–518

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Hasselgren CH, Boyer S, Arvidson K, Aveston S, Dierkes P, Benigni R, Benz RD, Contrera J, Kruhlak NL, Matthews EJ, Han X, Jaworska J, Kemper RA, Rathman JF, Richard AM (2008) Understanding genetic toxicity through data mining: the process of building knowledge by integrating multiple genetic toxicity databases. Toxicol Mech Methods 18:277–295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Amberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Amberg, A. (2013). In Silico Methods. In: Vogel, H.G., Maas, J., Hock, F.J., Mayer, D. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25240-2_55

Download citation

Publish with us

Policies and ethics