Skip to main content

Free Radical Biology of Eye Diseases

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

In the eye, cells are constantly exposed to the effects of reactive oxygen species (ROS) deriving from either external sources or endogenous metabolism. The production of ROS is balanced by antioxidant defenses, including enzymes that remove ROS (superoxide dismutase, catalase, peroxidase), proteins, low molecular weight peptides and cofactors (glutathione, NADPH, thioredoxin), and lipid- and water-soluble low molecular weight that scavenge reactive oxygen and nitrogen species (α-tocopherol, ascorbic acid and β-carotene). When ROS production overwhelms the cellular antioxidant defenses, cells are under oxidative stress. Oxidative stress/damage has been implicated in the pathogenesis of a number of ocular diseases including cataracts, age-related macular degeneration, glaucoma, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham AG, Cox C, West S (2010) The differential effect of ultraviolet light exposure on cataract rate across regions of the lens. Invest Ophthalmol Vis Sci 51(8):3919–3923

    PubMed Central  PubMed  Google Scholar 

  • Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10):1417–1436

    PubMed Central  Google Scholar 

  • Alberti G, Oguni M, Podgor M, Sperduto RD, Tomarev S, Grassi C, Williams S, Kaiser-Kupfer M, Maraini G, Hejtmancik JF (1996) Glutathione S-transferase M1 genotype and age-related cataracts. Lack of association in an italian population. Invest Ophthalmol Vis Sci 37(6):1167–1173

    CAS  PubMed  Google Scholar 

  • Ansari NH, Wang L, Srivastava SK (1996) Role of lipid aldehydes in cataractogenesis: 4-hydroxynonenal-induced cataract. Biochem Mol Med 58(1):25–30

    CAS  PubMed  Google Scholar 

  • Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S (2005) Age-related cataract. Lancet 365(9459):599–609

    PubMed  Google Scholar 

  • Awasthi S, Srivatava SK, Piper JT, Singhal SS, Chaubey M, Awasthi YC (1996) Curcumin protects against 4-hydroxy-2-trans-nonenal-induced cataract formation in rat lenses. Am J Clin Nutr 64(5):761–766

    CAS  PubMed  Google Scholar 

  • Azzi A (2007) Molecular mechanism of alpha-tocopherol action. Free Radic Biol Med 43(1):16–21

    CAS  PubMed  Google Scholar 

  • Babizhayev MA (1996) Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing. Biochim Biophys Acta 1315(2):87–99

    PubMed  Google Scholar 

  • Babizhayev MA (2005) Analysis of lipid peroxidation and electron microscopic survey of maturation stages during human cataractogenesis: pharmacokinetic assay of Can-C N-acetylcarnosine prodrug lubricant eye drops for cataract prevention. Drugs R&D 6(6):345–369

    CAS  Google Scholar 

  • Babizhayev MA (2012) Biomarkers and special features of oxidative stress in the anterior segment of the eye linked to lens cataract and the trabecular meshwork injury in primary open-angle glaucoma: challenges of dual combination therapy with N-acetylcarnosine lubricant eye drops and oral formulation of nonhydrolyzed carnosine. Fundam Clin Pharmacol 26(1):86–117

    CAS  PubMed  Google Scholar 

  • Babizhayev MA, Costa EB (1994) Lipid peroxide and reactive oxygen species generating systems of the crystalline lens. Biochim Biophys Acta 1225(3):326–337

    CAS  PubMed  Google Scholar 

  • Balogh LM, Atkins WM (2011) Interactions of glutathione transferases with 4-hydroxynonenal. Drug Metab Rev 43(2):165–178

    CAS  PubMed  Google Scholar 

  • Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2):115–134

    CAS  PubMed  Google Scholar 

  • Behndig A, Svensson B, Marklund SL, Karlsson K (1998) Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol Vis Sci 39(3):471–475

    CAS  PubMed  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316

    CAS  PubMed  Google Scholar 

  • Biju PG, Rooban BN, Lija Y, Devi VG, Sahasranamam V, Abraham A (2007) Drevogenin D prevents selenite-induced oxidative stress and calpain activation in cultured rat lens. Mol Vis 13:1121–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borchman D, Yappert MC (2010) Lipids and the ocular lens. J Lipid Res 51(9):2473–2488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bova LM, Sweeney MH, Jamie JF, Truscott RJ (2001) Major changes in human ocular UV protection with age. Invest Ophthalmol Vis Sci 42(1):200–205

    CAS  PubMed  Google Scholar 

  • Brantley MA Jr, Osborn MP, Sanders BJ, Rezaei KA, Lu P, Li C, Milne GL, Cai J, Sternberg P Jr (2012) Plasma biomarkers of oxidative stress and genetic variants in age-related macular degeneration. Am J Ophthalmol 153(3):460–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brennan LA, Kantorow M (2009) Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res 88(2):195–203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown NP, Bron AJ (1996) Lens disorders. A clinical manual of cataract diagnosis, Butterworth Heinemann, Oxford

    Google Scholar 

  • Brubaker RF, Bourne WM, Bachman LA, McLaren JW (2000) Ascorbic acid content of human corneal epithelium. Invest Ophthalmol Vis Sci 41(7):1681–1683

    CAS  PubMed  Google Scholar 

  • Catalá A (2006) An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 38(9):1482–1495

    PubMed  Google Scholar 

  • Cekic O (1998) Copper, lead, cadmium and calcium in cataractous lenses. Ophthalmic Res 30(1):49–53

    CAS  PubMed  Google Scholar 

  • Chang MK, Binder CJ, Miller YI, Subbanagounder G, Silverman GJ, Berliner JA, Witztum JL (2004) Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med 200(11):1359–1370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhary S, Srivastava S, Xiao T, Andley UP, Srivastava SK, Ansari NH (2003) Metabolism of lipid derived aldehyde, 4-hydroxynonenal in human lens epithelial cells and rat lens. Invest Ophthalmol Vis Sci 44(6):2675–2682

    PubMed  Google Scholar 

  • Christen WG, Glynn RJ, Sesso HD, Kurth T, MacFadyen J, Bubes V, Buring JE, Manson JE, Gaziano JM (2010) Age-related cataract in a randomized trial of vitamins E and C in men. Arch Ophthalmol 128(11):1397–1405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99(23):14682–14687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curcio CA, Johnson M, Huang JD, Rudolf M (2010) Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J Lipid Res 51(3):451–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dai Z, Nemet I, Shen W, Monnier VM (2007) Isolation, purification and characterization of histidino-threosidine, a novel maillard reaction protein crosslink from threose, lysine and histidine. Arch Biochem Biophys 463(1):78–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies MJ, Truscott RJ (2001) Photo-oxidation of proteins and its role in cataractogenesis. J Photochem Photobiol B 63(1–3):114–125

    CAS  PubMed  Google Scholar 

  • Dawczynski J, Blum M, Winnefeld K, Strobel J (2002) Increased content of zinc and iron in human cataractous lenses. Biol Trace Elem Res 90(1–3):15–23

    CAS  PubMed  Google Scholar 

  • Del Priore LV, Kuo YH, Tezel TH (2002) Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43(10):3312–3318

    PubMed  Google Scholar 

  • Delcourt C, Carrière I, Ponton-Sanchez A, Lacroux A, Covacho MJ, Papoz L, The POLA Study Group (2000) Light exposure and the risk of cortical, nuclear, and posterior subcapsular cataracts: the Pathologies Oculaires Liées à l’Age (POLA) study. Arch Ophthalmol 118(3):385–392

    CAS  PubMed  Google Scholar 

  • Detrick B, Hooks JJ (2010) Immune regulation in the retina. Immunol Res 47(1–3):153–161

    CAS  PubMed  Google Scholar 

  • Ding X, Patel M, Chan CC (2009) Molecular pathology of age-related macular degeneration. Prog Retin Eye Res 28(1):1–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fagali N, Catalá A (2011) Melatonin and structural analogues do not possess antioxidant properties on Fe(2+)-initiated peroxidation of sonicated liposomes made of retinal lipids. Chem Phys Lipids 164(7):688–695

    CAS  PubMed  Google Scholar 

  • Fan X, Reneker LW, Obrenovich ME, Strauch C, Cheng R, Jarvis SM, Ortwerth BJ, Monnier VM (2006) Vitamin C mediates aging of lens crystallins by the maillard reaction in a humanized mouse model. Proc Natl Acad Sci USA 103(42):16912–16917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng Z, Liu Z, Li X, Jia H, Sun L, Tian C, Jia L, Liu J (2010) α-tocopherol is an effective phase II enzyme inducer: protective effects on acrolein-induced oxidative stress and mitochondrial dysfunction in human retinal pigment epithelial cells. J Nutr Biochem 21(12):1222–1231

    CAS  PubMed  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O2 •−), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517

    CAS  PubMed  Google Scholar 

  • Ganea E, Harding JJ (2006) Glutathione-related enzymes and the eye. Curr Eye Res 31(1):1–11

    CAS  PubMed  Google Scholar 

  • Garland DL (1991) Ascorbic acid and the eye. Am J Clin Nutr 54(6):1198S–1202S

    CAS  PubMed  Google Scholar 

  • Garner B, Davies M, Truscott RJ (2000) Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. Exp Eye Res 70:81–88

    CAS  PubMed  Google Scholar 

  • Ghanem AA, Arafa LF, El-Baz A (2010) Oxidative stress markers in patients with primary open-angle glaucoma. Curr Eye Res 35(4):295–301

    CAS  PubMed  Google Scholar 

  • Giblin FJ (2000) Glutathione: a vital lens antioxidant. J Ocul Pharmacol Ther 16(2):121–135

    CAS  PubMed  Google Scholar 

  • Giblin FJ, Reddan JR, Schrimscher L, Dziedzic DC, Reddy VN (1990) The relative roles of the glutathione redox cycle and catalase in the detoxification of H2O2 by cultured rabbit lens epithelial cells. Exp Eye Res 50(6):795–804

    CAS  PubMed  Google Scholar 

  • Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, AMD Genetics Clinical Study Group, Hageman GS, Dean M, Allikmets R (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38(4):458–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goralska M, Nagar S, Fleisher LN, McGahan MC (2009) Distribution of ferritin chains in canine lenses with and without age-related nuclear cataracts. Mol Vis 15:2404–2410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guajardo MH, Terrasa AM, Catalá A (2006) Lipid-protein modifications during ascorbate-Fe2+ peroxidation of photoreceptor membranes: protective effect of melatonin. J Pineal Res 41(3):201–210

    CAS  PubMed  Google Scholar 

  • Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44(10):1098–1124

    PubMed  Google Scholar 

  • Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421

    CAS  PubMed  Google Scholar 

  • Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70(5):257–265

    PubMed  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715S–725S

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hansen S, Holmskov U (1998) Structural aspects of collectins and receptors for collectins. Immunobiology 199(2):165–189

    CAS  PubMed  Google Scholar 

  • Hegde KR, Varma SD (2004) Protective effect of ascorbate against oxidative stress in the mouse lens. Biochim Biophys Acta 1670(1):12–18

    CAS  PubMed  Google Scholar 

  • Herbst U, Toborek M, Kaiser S, Mattson MP, Hennig B (1999) 4-Hydroxynonenal induces dysfunction and apoptosis of cultured endothelial cells. J Cell Physiol 181(2):295–303

    CAS  PubMed  Google Scholar 

  • Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM (2012) Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J 442(3):453–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14(2):194–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang L, Estrada R, Yappert MC, Borchman D (2006a) Oxidation-induced changes in human lens epithelial cells. 1. Phospholipids. Free Radic Biol Med 41(9):1425–1432

    CAS  PubMed  Google Scholar 

  • Huang L, Tang D, Yappert MC, Borchman D (2006b) Oxidation-induced changes in human lens epithelial cells. 2. Mitochondria and the generation of reactive oxygen species. Free Radic Biol Med 41(6):926–936

    CAS  PubMed  Google Scholar 

  • Izzotti A, Bagnis A, Saccà SC (2006) The role of oxidative stress in glaucoma. Mutat Res 612(2):105–114

    CAS  PubMed  Google Scholar 

  • Kannan R, Stolz A, Ji Q, Prasad PD, Ganapathy V (2001) Vitamin C transport in human lens epithelial cells: evidence for the presence of SVCT2. Exp Eye Res 73(2):159–165

    CAS  PubMed  Google Scholar 

  • Kim DD, Song WC (2006) Membrane complement regulatory proteins. Clin Immunol 118(2–3):127–136

    CAS  PubMed  Google Scholar 

  • Kisic B, Miric D, Zoric L, Dragojevic I, Stolic A (2009) Role of lipid peroxidation in pathogenesis of senile cataract. Vojnosanit Pregl 66(5):371–375

    PubMed  Google Scholar 

  • Kisic B, Miric D, Zoric L, Ilic A (2012a) Role of lipid peroxidation in the pathogenesis of age-related cataract. In: Catala A (ed) Lipid peroxidation. InTech, Rijeka (Chap 21). ISBN 978-953-51-0716-3

    Google Scholar 

  • Kisic B, Miric D, Zoric L, Ilic A, Dragojevic I (2012b) Antioxidant capacity of lenses with age-related cataract. Oxid Med Cell Longev 2012:467130

    Google Scholar 

  • Kisic B, Miric D, Zoric L, Ilić A, Dragojevic I (2012c) Reduced glutathione level and GSH-dependent enzyme activities in corticonuclear blocks of lenses in patients with senile cataract. Srp Arh Celok Lek 140(9–10):563–570

    PubMed  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein BE, Lee KE, Danforth LG, Schaich TM, Cruickshanks KJ, Klein R (2010) Selected sun-sensitizing medications and incident cataract. Arch Ophthalmol 128(8):959–963

    PubMed Central  PubMed  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650

    CAS  PubMed  Google Scholar 

  • Lassen N, Black WJ, Estey T, Vasiliou V (2008) The role of corneal crystallins in the cellular defense mechanisms against oxidative stress. Semin Cell Dev Biol 19(2):100–112

    CAS  PubMed  Google Scholar 

  • Linetsky M, Chemoganskiy VG, Hu F, Ortwerth BJ (2003) Effect of UVA light on the activity of several aged human lens enzymes. Invest Ophthalmol Vis Sci 44(1):264–274

    PubMed  Google Scholar 

  • Linetsky M, Shipova E, Cheng R, Ortwerth BJ (2008) Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins. Biochim Biophys Acta Mol Basis Dis 1782(1):22–34

    CAS  Google Scholar 

  • Liu C, Ogando D, Bonanno JA (2011) SOD2 contributes to anti-oxidative capacity in rabbit corneal endothelial cells. Mol Vis 17:2473–2481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lou MF (2003) Redox regulation in the lens. Prog Retin Eye Res 22(5):657–682

    CAS  PubMed  Google Scholar 

  • Majsterek I, Malinowska K, Stanczyk M, Kowalski M, Blaszczyk J, Kurowska AK, Kaminska A, Szaflik J, Szaflik JP (2011) Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp Mol Pathol 90(2):231–237

    CAS  PubMed  Google Scholar 

  • Mandal MN, Ayyagari R (2006) Complement factor H: spatial and temporal expression and localization in the eye. Invest Ophthalmol Vis Sci 47(9):4091–4097

    PubMed  Google Scholar 

  • Marnett LJ (2002) Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181–182:219–222

    PubMed  Google Scholar 

  • May JM (1999) Is ascorbic acid an antioxidant for the plasma membrane. FASEB J 13(9):995–1006

    CAS  PubMed  Google Scholar 

  • McCarty CA, Taylor HR (2002) A review of the epidemilogic evidence linking ultraviolet radiation and cataracts. Dev Ophthalmol 35:21–31

    PubMed  Google Scholar 

  • McNulty R, Wang H, Mathias RT, Ortwerth BJ, Truscott RJ, Bassnett S (2004) Regulation of tissue oxygen levels in the mammalian lens. J Physiol 559(Pt 3):883–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michael R, Bron AJ (2011) The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci 366(1568):1278–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller YI, Choi SH, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, Boullier A, Gonen A, Diehl CJ, Que X, Montano E, Shaw PX, Tsimikas S, Binder CJ, Witztum JL (2011) Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 108(2):235–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto Y, Koh YH, Park YS, Fujiwara N, Sakiyama H, Misonou Y, Ookawara T, Suzuki K, Honke K, Taniguchi N (2003) Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses. Biol Chem 384(4):567–574

    CAS  PubMed  Google Scholar 

  • Molnár GA, Nemes V, Biró Z, Ludány A, Wagner Z, Wittmann I (2005) Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Free Radic Res 39(12):1359–1366

    PubMed  Google Scholar 

  • Moreau KL, King JA (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 18(5):273–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagai N, Ito Y, Takeuchi N (2011) Correlation between hyper-sensitivity to hydrogen peroxide and low defense against Ca(2+) influx in cataractogenic lens of ihara cataract rats. Biol Pharm Bull 34(7):1005–1010

    CAS  PubMed  Google Scholar 

  • Nagaraj RH, Monnier VM (1995) Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the maillard reaction of L-threose with proteins. Biochem Biophys Acta 1253(1):75–84

    PubMed  Google Scholar 

  • Nauta AJ, Trouw LA, Daha MR, Tijsma O, Nieuwland R, Schwaeble WJ, Gingras AR, Mantovani A, Hack EC, Roos A (2002) Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 32(6):1726–1736

    CAS  PubMed  Google Scholar 

  • Nauta AJ, Raaschou-Jensen N, Roos A, Daha MR, Madsen HO, Borrias-Essers MC, Ryder LP, Koch C, Garred P (2003) Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 33(10):2853–2863

    CAS  PubMed  Google Scholar 

  • Ohia SE, Opere CA, Leday AM (2005) Pharmacological consequences of oxidative stress in ocular tissues. Mutat Res 579(1–2):22–36

    CAS  PubMed  Google Scholar 

  • Organisciak DT, Vaughan DK (2010) Retinal light damage: mechanisms and protection. Prog Retin Eye Res 29(2):113–134

    PubMed Central  PubMed  Google Scholar 

  • Othman H, Gholampour AR, Saadat I, Farvardin-Jahromoi M, Saadat M (2012) Age-related macular degeneration and genetic polymorphisms of glutathione S-transferases M1 (GSTM1) and T1 (GSTT1). Mol Biol Rep 39(3):3299–3303

    CAS  PubMed  Google Scholar 

  • Ozmen B, Ozmen D, Erkin E, Güner I, Habif S, Bayindir O (2002) Lens superoxide dismutase and catalase activities in diabetic cataract. Clin Biochem 35(1):69–72

    CAS  PubMed  Google Scholar 

  • Pappa A, Chen C, Koutalos Y, Townsend AJ, Vasiliou V (2003) Aldh3a1 protects human corneal epithelial cells from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radic Biol Med 34(9):1178–1189

    CAS  PubMed  Google Scholar 

  • Petersen SV, Thiel S, Jensenius JC (2001) The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol 38(2–3):133–149

    CAS  PubMed  Google Scholar 

  • Rattner A, Nathans J (2006) Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7(11):860–872

    CAS  PubMed  Google Scholar 

  • Reddy VN, Giblin FJ, Lin LR, Chakrapani B (1998) The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium. Invest Ophthalmol Vis Sci 39(2):344–350

    CAS  PubMed  Google Scholar 

  • Reddy VN, Giblin FJ, Lin LR, Dang L, Unakar NJ, Musch DC, Boyle DL, Takemoto LJ, Ho YS, Knoernschild T, Juenemann A, Lütjen-Drecoll E (2001) Glutathione peroxidase-1 deficiency leads to increased nuclear light scattering, membrane damage, and cataract formation in gene-knockout mice. Invest Ophthalmol Vis Sci 42(13):3247–3255

    CAS  PubMed  Google Scholar 

  • Rieger G, Klieber M, Schimetta W, Pölz W, Griebenow S, Winkler R, Horwath-Winter J, Schmut O, Spitzer-Sonnleitner B (2010) The effect of iodide iontophoresis on the antioxidative capacity of the tear fluid. Graefes Arch Clin Exp Ophthalmol 248(11):1639–1646

    CAS  PubMed  Google Scholar 

  • Ringvold A, Anderssen E, Kjønniksen I (1998) Ascorbate in the corneal epithelium of diurnal and nocturnal species. Invest Ophthalmol Vis Sci 39(13):2774–2777

    CAS  PubMed  Google Scholar 

  • Ringvold A, Anderssen E, Kjønniksen I (2003) Impact of the environment on the mammalian corneal epithelium. Invest Ophthalmol Vis Sci 44(1):10–15

    PubMed  Google Scholar 

  • Roberts JE (2001) Ocular phototoxicity. J Photochem Photobiol B 64(2–3):136–143

    CAS  PubMed  Google Scholar 

  • Rózanowska M, Pawlak A, Rózanowski B, Skumatz C, Zareba M, Boulton ME, Burke JM, Sarna T, Simon JD (2004) Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Invest Ophthalmol Vis Sci 45(4):1052–1060

    PubMed  Google Scholar 

  • Saccà SC, Izzotti A, Rossi P, Traverso C (2007) Glaucomatous outflow pathway and oxidative stress. Exp Eye Res 84(3):389–399

    PubMed  Google Scholar 

  • Sakthivel M, Elanchezhian R, Ramesh E, Isai M, Jesudasan CN, Thomas PA, Geraldine P (2008) Prevention of selenite-induced cataractogenesis in Wistar rats by the polyphenol, ellagic acid. Exp Eye Res 86(2):251–259

    CAS  PubMed  Google Scholar 

  • Sawada H, Fukuchi T, Abe H (2009) Oxidative stress markers in aqueous humor of patients with senile cataracts. Curr Eye Res 34(1):36–41

    CAS  PubMed  Google Scholar 

  • Sayre LM, Lin D, Yuan Q, Zhu X, Tang X (2006) Protein adducts generated from products of lipid oxidation: focus on HNE and one. Drug Metab Rev 38(4):651–675

    CAS  PubMed  Google Scholar 

  • Schutt F, Bergmann M, Holz FG, Kopitz J (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44(8):3663–3668

    PubMed  Google Scholar 

  • Shang F, Lu M, Dudek E, Reddan J, Taylor A (2003) Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic Biol Med 34(5):521–530

    CAS  PubMed  Google Scholar 

  • Shanmugam N, Figarola JL, Li Y, Swiderski PM, Rahbar S, Natarajan R (2008) Proinflammatory effects of advanced lipoxidation end products in monocytes. Diabetes 57(4):879–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw PX, Zhang L, Zhang M, Du H, Zhao L, Lee C, Grob S, Lim SL, Hughes G, Lee J, Bedell M et al (2012) Complement factor H genotypes impact risk of age-related macular degeneration by interaction with oxidized phospholipids. Proc Natl Acad Sci USA 109(34):13757–13762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimmura S, Suematsu M, Shimoyama M, Tsubota K, Oguchi Y, Subthreshold IY (1996) UV radiation-induced peroxide formation in cultured corneal epithelial cells: the protective effects of lactoferrin. Exp Eye Res 63(5):519–526

    CAS  PubMed  Google Scholar 

  • Sjöberg AP, Trouw LA, Blom AM (2009) Complement activation and inhibition: a delicate balance. Trends Immunol 30(2):83–90

    PubMed  Google Scholar 

  • Sparrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10(9):802–823

    CAS  PubMed  Google Scholar 

  • Spector A (2000) Oxidative stress and disease. J Ocular Pharmacol 16:193–201

    CAS  Google Scholar 

  • Spencer KL, Hauser MA, Olson LM, Schmidt S, Scott WK, Gallins P, Agarwal A, Postel EA, Pericak-Vance MA, Haines JL (2008) Deletion of CFHR3 and CFHR1 genes in age-related macular degeneration. Hum Mol Genet 17(7):971–977

    CAS  PubMed  Google Scholar 

  • Stark G (2005) Functional consequences of oxidative membrane damage. J Membr Biol 205(1):1–16

    CAS  PubMed  Google Scholar 

  • Stasi K, Nagel D, Yang X, Wang RF, Ren L, Podos SM, Mittag T, Danias J (2006) Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Invest Ophthalmol Vis Sci 47(3):1024–1029

    PubMed  Google Scholar 

  • Sun M, Finnemann SC, Febbraio M, Shan L, Annangudi SP, Podrez EA, Hoppe G, Darrow R, Organisciak DT, Salomon RG, Silverstein RL, Hazen SL (2006) Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress conditions. J Biol Chem 281(7):4222–4230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun L, Xi B, Yu L, Gao XC, Shi DJ, Yan YK, Xu DJ, Han Q, Wang C (2010) Association of glutathione S-transferases polymorphisms (GSTM1 and GSTT1) with senile cataract: a meta-analysis. Invest Ophthalmol Vis Sci 51(12):6381–6386

    PubMed  Google Scholar 

  • Tang D, Borchman D, Yappert MC, Vrensen GF, Rasi V (2003) Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses. Invest Ophthalmol Vis Sci 44(5):2059–2066

    PubMed  Google Scholar 

  • Tate DJ Jr, Miceli MV, Newsome DA (1995) Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 36(7):1271–1279

    PubMed  Google Scholar 

  • Tezel G, Wax MB (2000) The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. J Neurosci 20(10):3552–3562

    CAS  PubMed  Google Scholar 

  • Tezel G, Wax MB (2007) Glaucoma. Chem Immunol Allergy 92:221–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tezel G, Yang X, Luo C, Kain AD, Powell DW, Kuehn MH, Kaplan HJ (2010) Oxidative stress and the regulation of complement activation in human glaucoma. Invest Ophthalmol Vis Sci 51(10):5071–5082

    PubMed Central  PubMed  Google Scholar 

  • Tokuda K, Zorumski CF, Izumi Y (2007) Effects of ascorbic acid on UV light-mediated photoreceptor damage in isolated rat retina. Exp Eye Res 84(3):537–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51(5):1000–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Truscott RJ (2005) Age-related nuclear cataract-oxidation is the key. Exp Eye Res 80(5):709–725

    CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44-84.

    Google Scholar 

  • Varma SD, Hegde KR (2010) Kynurenine-induced photo oxidative damage to lens in vitro: protective effect of caffeine. Mol Cell Biochem 340(1–2):49–54

    CAS  PubMed  Google Scholar 

  • Wakamatsu TH, Dogru M, Tsubota K (2008) Tearful relations: oxidative stress, inflammation and eye diseases. Arq Bras Oftalmol 71(6 Suppl):72–79

    PubMed  Google Scholar 

  • Wang H, Gao J, Sun X, Martinez-Wittinghan FJ, Li L, Varadaraj K, Farrell M, Reddy VN, White TW, Mathias RT (2009) The effects of GPX-1 knockout on membrane transport and intracellular homeostasis in the lens. J Membr Biol 227(1):25–37

    CAS  PubMed  Google Scholar 

  • Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM, Calkins DJ (2008) Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. Neuroscience 28(46):12085–12096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HP, Charbel Issa P, Cano M, Brandstätter H, Tsimikas S, Skerka C, Superti-Furga G, Handa JT, Zipfel PF, Witztum JL, Binder CJ (2011) Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 478(7367):76–81

    CAS  PubMed  Google Scholar 

  • Wheatley RA (2000) Some recent trends in the analytical chemistry of lipid peroxidation. Trends Anal Chem 19(10):617–628

    CAS  Google Scholar 

  • Wielgus AR, Collier RJ, Martin E, Lih FB, Tomer KB, Chignell CF, Roberts JE (2010) Blue light induced A2E oxidation in rat eyes-experimental animal model of dry AMD. Photochem Photobiol Sci 9(11):1505–1512

    CAS  PubMed  Google Scholar 

  • Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xing KY, Lou MF (2010) Effect of age on the thioltransferase (glutaredoxin) and thioredoxin systems in the human lens. Invest Ophthalmol Vis Sci 51(12):6598–6604

    PubMed Central  PubMed  Google Scholar 

  • Yadav UC, Kalariya NM, Ramana KV (2011) Emerging role of antioxidants in the protection of uveitis complications. Curr Med Chem 18(6):931–942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Tezel G, Patil RV, Romano C, Wax MB (2001) Serum autoantibody against glutathione S-transferase in patients with glaucoma in patients with glaucoma. Invest Ophthalmol Vis Sci 42(6):1273–1276

    CAS  PubMed  Google Scholar 

  • Yin H, Xu L, Porter NA (2011a) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111(10):5944–5972

    CAS  PubMed  Google Scholar 

  • Yin J, Thomas F, Lang JC, Chaum E (2011b) Modulation of oxidative stress responses in the human retinal pigment epithelium following treatment with vitamin C. J Cell Physiol 226(8):2025–2032

    CAS  PubMed  Google Scholar 

  • Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122(4):598–614

    PubMed  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33(3):337–349

    CAS  PubMed  Google Scholar 

  • Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9(10):729–740

    CAS  PubMed  Google Scholar 

  • Zoric L, Elek-Vlajic S, Jovanovic M, Kisic B, Djokic O, Canadanovic V, Cosic V, Jaksic V (2008) Oxidative stress intensity in lens and aqueous depending on age-related cataract type and brunescense. Eur J Ophthalmol 18(5):669–674

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana Kisic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kisic, B., Miric, D., Zoric, L. (2014). Free Radical Biology of Eye Diseases. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_192

Download citation

Publish with us

Policies and ethics