Skip to main content

Endohedral Nitrogen Fullerenes

  • Living reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

There is a remarkable molecule that can be said to be nature’s atomic trap. This molecule is called an endohedral nitrogen fullerene. Endohedral nitrogen fullerenes (ENFs) and related molecules are the subject of this chapter. Endohedral fullerenes were discovered almost as soon as their empty-cage equivalents. However, ENFs were only available for studies more than a decade after the discovery of fullerenes. A number of endohedral metallofullerenes have been made in significant amounts. However, there are only a handful of ENFs studied to date. ENFs are remarkable for another reason too. Nitrogen is one of the most reactive elements known to science. This is somewhat concealed by the relative inertness of the nitrogen molecule. The nitrogen-nitrogen triple bond is after all one of the strongest bonds in the universe. However atomic nitrogen retains its high reactivity. So how come atomic nitrogen is stable inside a fullerene molecule? Well, it turns out the nitrogen wave function just about “fits snugly” inside the fullerene cage. This chapter describes the different methods of production of ENFs. The properties and chemical functionalization of ENFs are also explored with the aim to summarize progress made towards applications. There is still some way to go before ENFs can be used in real-life applications. This chapter describes what progress has been made and what challenges lay ahead before nature’s atomic traps find their way in commercially available products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Murphy TA, Pawlik T, Weidinger A, Höhne M, Alcala R, Spaeth JM (1996) Phys Rev Lett 77:1075

    Article  CAS  Google Scholar 

  2. Dietel E, Hirsch A, Pietzak B (1999) J Am Chem Soc 121:2432

    Article  CAS  Google Scholar 

  3. Waiblinger M, Lips K, Harneit W, Weidinger A, Dietel E, Hirsch A (2001) Phys Rev B 64(15):159901

    Article  CAS  Google Scholar 

  4. Suetsuna T, Dragoe N, Harneit W, Weidinger A, Shimotani H, Ito S, Takagi H, Kitazawa K (2002) Chem A Eur J 8(22):5079

    Article  CAS  Google Scholar 

  5. Nikawa H, Araki Y, Slanina Z, Tsuchiya T, Akasaka T, Wada T, Ito O, Dinse KP, Ata M, Kato T, Nagase S (2010) Chem Commun 46(4):631

    Article  CAS  Google Scholar 

  6. Jakes P, Dinse KP, Meyer C, Harneit W, Weidinger A (2003) Phys Chem Chem Phys 5(19):4080

    Article  CAS  Google Scholar 

  7. Kanai M, Porfyrakis K, Briggs GAD, Dennis T (2004) J S Chem Commun 40(2):210

    Article  CAS  Google Scholar 

  8. Mauser H, van Eikema Hommes NJR, Clark T, Hirsch A, Pietzak B, Weidinger A, Dunsch L (1997) Angew Chemie Int Ed 36(24):2835

    Article  CAS  Google Scholar 

  9. Plakhutin BN, Breslavskaya NN, Gorelik EV, Arbuznikov AV (2005) J Mol Struct THEOCHEM 727(1–3 SPEC. ISS):149

    Article  CAS  Google Scholar 

  10. Lu X (2005) Chen, Z. Chem Rev 105(10):3643

    Article  CAS  PubMed  Google Scholar 

  11. Farrington, B. J. Ph.D. thesis, Oxford University, 2013

    Google Scholar 

  12. Zhou, S. Ph.D. thesis, Oxford University, 2017

    Google Scholar 

  13. Pietzak B, Waiblinger M, Murphy TA, Weidinger A, Hohne M, Dietel E, Hirsch. A (1997) Chem Phys Lett 4(November):259

    Google Scholar 

  14. Ito S, Shimotani H, Takagi H, Dragoe N (2008) Fullerenes Nanotub Carbon Nanostruct 16(3):206

    Article  CAS  Google Scholar 

  15. Cho SC, Kaneko T, Ishida H, Hatakeyama R, Cho SC, Kaneko T, Ishida H, Hatakeyama R (2015) J Appl Phys 117:123301

    Article  CAS  Google Scholar 

  16. Huang H, Ata M, Ramm M (2002) Chem Commun 38(18):2076

    Article  CAS  Google Scholar 

  17. Ata M, Huang H, Akasaka T (2004) J Phys Chem B 108:4640

    Article  CAS  Google Scholar 

  18. Hawkins JM, Lewis TA, Loren SD, Meyer A, Heath JR, Shibato Y, Saykally RJ (1990) J Org Chem 55(26):6250

    Article  CAS  PubMed  Google Scholar 

  19. Gasper MP, Armstrong DW (1995) J Liq Chromatogr 18(6):1047

    Article  CAS  Google Scholar 

  20. Liu X, Zuo T, Dorn H (2017) C J Phys Chem C 121(7):4045

    Article  CAS  Google Scholar 

  21. Plant SR, Porfyrakis K (2014) Analyst 139:4519

    Article  CAS  PubMed  Google Scholar 

  22. Wakahara T, Matsunaga Y, Katayama A, Maeda Y, Kako M, Akasaka T, Okamura M, Kato T, Choe Y, Kobayashi K, Nagase S, Huang H, Ata M (2003) Chem Commun 39(23):2940

    Article  CAS  Google Scholar 

  23. Harneit W, Huebener K, Naydenov B, Schaefer S, Scheloske M (2007) Phys Status Solidi 244(11):3879

    Article  CAS  Google Scholar 

  24. Weidinger A, Waiblinger M, Pietzak B, Murphy TA (1998) Appl Phys A Mater Sci Process 66(3):287

    Article  CAS  Google Scholar 

  25. Morton, J. J. L. Ph.D. thesis, Oxford University, 2005

    Google Scholar 

  26. Benjamin SC, Ardavan A (2006) J Phys Condens Matter 18(21):S867

    Article  CAS  Google Scholar 

  27. Morton JJL, Tyryshkin AM, Ardavan A, Porfyrakis K, Lyon SA, Briggs GAD (2005) J Chem Phys 122(17):174504

    Article  PubMed  CAS  Google Scholar 

  28. Morton JJL, Tyryshkin AM, Ardavan A, Porfyrakis K, Lyon SA, Briggws GAD (2006) J Chem Phys 124(1):14508

    Article  PubMed  CAS  Google Scholar 

  29. Morton JJL, Tyryshkin AM, Ardavan A, Porfyrakis K, Lyon S a, Briggs GAD (2007) Phys Rev B 76:085418

    Article  CAS  Google Scholar 

  30. Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications, 2nd edn. Wiley

    Google Scholar 

  31. Schweiger, Arthur, Jeschke G (2001) Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press

    Google Scholar 

  32. Brown RM (2011) Coherent transfer between electron and nuclear spin qubits and their decoherence properties. Oxford University

    Google Scholar 

  33. Zadrozny JM, Niklas J, Poluektov OG, Freedman DE (2015) ACS Cent. Sci 1(9):488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Knapp C, Dinse KP, Pietzak B, Waiblinger M, Weidinger A (1997) Chem Phys Lett 272(July):433

    Article  CAS  Google Scholar 

  35. Moreno-Pineda E, Godfrin C, Balestro F, Wernsdorfer W, Ruben M (2018) Chem Soc Rev 47:501–513

    Article  CAS  PubMed  Google Scholar 

  36. Porfyrakis K, Laird E (2017) A IEEE Spectr 54(12):34

    Article  Google Scholar 

  37. Harding RT, Zhou S, Zhou J, Lindvall T, Myers WK, Ardavan A, Briggs GAD, Porfyrakis K, Laird E (2017) A Phys Rev Lett 119(14):1

    Article  Google Scholar 

  38. Camparo J (2007) Phys Today 60(11):33

    Article  CAS  Google Scholar 

  39. Lips K, Waiblinger M, Pietzak B, Weidinger A (2000) Phys Status Solidi 177(1):81

    Article  CAS  Google Scholar 

  40. Scheloske M, Naydenov B (2006) Isr J Chem 46:407

    Article  CAS  Google Scholar 

  41. Hörmann F, Hirsch A, Porfyrakis K, Briggs GAD (2011) European J. Org Chem 2011(1):117

    Article  CAS  Google Scholar 

  42. Diederich F, Isaacs L, Philp D (1994) Chem Soc Rev 23:243

    Article  CAS  Google Scholar 

  43. Hörmann F, Hirsch A (2013) Chem A Eur J 19(9):3188

    Article  CAS  Google Scholar 

  44. Skiebe A, Hirsch A, Klos H, Gotschy B (1994) Chem Phys Lett 220:138

    Article  CAS  Google Scholar 

  45. Franco L, Ceola S, Corvaja C, Bolzonella S, Harneit W, Maggini M (2006) Chem Phys Lett 422(1–3):100

    Article  CAS  Google Scholar 

  46. Zhang J, Morton JJL, Sambrook MR, Porfyrakis K, Ardavan A, Briggs G (2006) A D Chem Phys Lett 432(4–6):523

    Article  CAS  Google Scholar 

  47. Liu G, Khlobystov AN, Ardavan A, Briggs GAD, Porfyrakis K (2011) Chem Phys Lett 508(4):187

    Article  CAS  Google Scholar 

  48. Wakahara T, Kato T, Miyazawa K, Harneit W (2012) Carbon NY 50(4):1709

    Article  CAS  Google Scholar 

  49. Goedde B, Waiblinger M, Jakes P, Weiden N, Dinse KP, Weidinger A (2001) Chem Phys Lett 334(February):12

    Article  CAS  Google Scholar 

  50. Komatsu K, Wang GW, Murata Y, Tanaka T, Fujiwara K (1998) J Org Chem 63:9358

    Article  CAS  Google Scholar 

  51. Zhang J, Porfyrakis K, Sambrook MR, Ardavan A, Briggs G (2006) A D J Phys Chem B 110(34):16979

    Article  CAS  Google Scholar 

  52. Jones MAG, Britz DA, Morton JJL, Khlobystov AN, Porfyrakis K, Ardavan A, Briggs G (2006) A D Phys Chem Chem Phys 8(17):2083

    Article  CAS  Google Scholar 

  53. Radford HE, Evenson KM (1968) Phys Rev 168(1):70

    Article  CAS  Google Scholar 

  54. Naydenov B, Spudat C, Harneit W, Süss HI, Hulliger J, Nuss J, Jansen M (2006) Chem Phys Lett 424(4–6):327

    Article  CAS  Google Scholar 

  55. Yang J, Feng P, Sygula A, Harneit W, Su J, Du J (2012) Phys Lett A 376(21):1748

    Article  CAS  Google Scholar 

  56. Zhang J, Porfyrakis K, Morton JJL, Sambrook MR, Harmer J, Xiao L, Ardavan A, Briggs G (2008) A D J Phys Chem C 112(8):2802

    Article  CAS  Google Scholar 

  57. Samal S, Geckeler KE (2000) Chem Commun 13:1101

    Article  Google Scholar 

  58. Liu Y, Zhao YL, Chen Y, Liang P, Li L (2005) Tetrahedron Lett 46(14):2507

    Article  CAS  Google Scholar 

  59. Semenov KN, Charykov NA, Keskinov VN (2011) J Chem Eng Data 56(2):230

    Article  CAS  Google Scholar 

  60. Zhang G, Liu Y, Liang D, Gan L, Li Y (2010) Angew Chemie Int Ed 49(31):5293

    Article  CAS  Google Scholar 

  61. Liu G, Khlobystov AN, Charalambidis G, Coutsolelos AG, Briggs GAD, Porfyrakis K (2012) J Am Chem Soc 134(4):1938

    Article  CAS  PubMed  Google Scholar 

  62. Zhou S, Yamamoto M, Briggs GAD, Imahori H, Porfyrakis K (2016) J Am Chem Soc 138(4):1313

    Article  CAS  PubMed  Google Scholar 

  63. Deak DS, Porfyrakis K, Castell MR (2007) Chem Commun 43(28):2941

    Article  CAS  Google Scholar 

  64. del Gimenez-Lopez MC, Gardener JA, Shaw AQ, Iwasiewicz-Wabnig A, Porfyrakis K, Balmer C, Dantelle G, Hadjipanayi M, Crossley A, Champness NR, Castell MR, Briggs GAD, Khlobystov AN (2010) Phys Chem Chem Phys 12(1):123

    Article  CAS  Google Scholar 

  65. Diaconescu B, Yang T, Berber S, Jazdzyk M, Miller G, Tománek D, Pohl K (2009) Phys Rev Lett 102(5):056102

    Article  PubMed  CAS  Google Scholar 

  66. Deak DS, Silly F, Porfyrakis K, Castell MR (2006) J Am Chem Soc 128(43):13976

    Article  CAS  PubMed  Google Scholar 

  67. Silly F, Shaw AQ, Porfyrakis K, Briggs GAD, Castell MR (2007) Appl Phys Lett 91:253109

    Article  CAS  Google Scholar 

  68. Wei Y, Reutt-Robey JE (2011) J Am Chem Soc 133(39):15232

    Article  CAS  PubMed  Google Scholar 

  69. Raisanen MT, Slater AG, Champness NR, Buck M (2012) Chem Sci 3(1):84

    Article  Google Scholar 

  70. Simon F, Kuzmany H, Rauf H, Pichler T, Bernardi J, Peterlik H, Korecz L, Fülöp F, Jánossy A (2004) Chem Phys Lett 383(3–4):362

    Article  CAS  Google Scholar 

  71. Khlobystov AN, Britz DA, Wang J, O’Neil SA, Poliakoff M, Briggs GAD (2004) J Mater Chem 14(19):2852

    Article  CAS  Google Scholar 

  72. Rice WD, Weber RT, Leonard AD, Tour JM, Arepalli S, Berka V, Tsai A, Kono J (2012) ACS Nano 6(3):2165

    Article  CAS  PubMed  Google Scholar 

  73. Plant SR, Jevric M, Morton JJL, Ardavan A, Khlobystov AN, Briggs GAD (2013) Porfyrakis. K Chem Sci 4(7):2971

    Article  CAS  Google Scholar 

  74. Farrington BJ, Jevric M, Rance GA, Ardavan A, Khlobystov AN, Briggs GAD (2012) Porfyrakis. K Angew Chemie Int Ed 51(15):3587

    Article  CAS  Google Scholar 

  75. Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJJ, Rodgers CT, Jeschke G, Timmel CR (2008) J Magn Reson 191:202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos Porfyrakis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, S., Porfyrakis, K. (2021). Endohedral Nitrogen Fullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3242-5_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3242-5

  • Online ISBN: 978-981-13-3242-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics